The 73rd Annual Meeting of the Japanese Cancer Association

Day 1

September 25 (Thursday)
Novel therapies based on tumor heterogeneity

Chairpersons: Hiroyuki Mano (Dept. Cellular Signaling, Grad. Sch. Med., The Univ. of Tokyo)
Andrew Futreal (UT MD Anderson Cancer Ctr.)

It usually takes >10 years and requires accumulation of multiple genetic/epigenetic alterations for a founding abnormal clone to become fully-blown cancer. The path for such development is highly heterogeneous; some cells may acquire genetic hits in a linear way, but others may develop in a branched way, leading to independent, multiple cancer. Cancer is, therefore, a rapidly evolving, intra-body creature by harnessing its genome instability. Such evolving nature can be the cause of cancer metastases and drug tolerance. Understanding the intrinsic heterogeneity of cancer is thus clinically relevant when you consider to "cure" cancer. By the use of emerging genomics technologies, we are now able to directly observe the heterogeneity within a tumor and also between different tumors. For instance, a clinically detectable tumor can be a mixture of tens of thousands of different subclones, even though they all arise from a single abnormal cell. In this symposium, top-notch scientists in this field will be gathered and discuss the clinical relevance of cancer heterogeneity.

CS4-1 Essential growth drivers and tumor-heterogeneity of cancer
Hiroiaky Mano (Dept. Cellular Signaling, Grad. Sch. Med., The Univ. of Tokyo)

CS4-2 Clonal evolution of glioma induced by anti-cancer therapy

CS4-3 The somatic genetic architecture of human cancer - insights from large scale sequencing
Andrew Futreal (Department of Genomic Medicine, UT MD Anderson Cancer Center)

CS4-4 Understanding cancer heterogeneity: from its molecular-genetic mechanisms to future therapeutic strategies
Tatsuhiko Shibata (Div. Cancer Genomics, National Cancer Center)

CS4-5 Clinical sequencing programs at NCC for new cancer drug development
Katsuya Tsuchihara (Div. TR., EPOC, Natl. Cancer Ctr.)

Clinical treatments based on tumor heterogeneity

Inactivating mutations in genes involved in DNA damage responses underlie the development of hereditary and sporadic common cancers through genome instability. Recently, it is noticed that aberrations of genes in chromatin regulation also underlie the development of common cancers. Chromatin remodeling occurs responding to signal transduction, DNA replication and DNA damages, and the chromatin regulation, in organization with transcription, DNA repair and other intracellular processes, contributes to gene expression and the maintenance of genome integrity. Recent genome-wide sequencing of cancer genomes using next generation sequencers have revealed frequent mutations of genes encoding histone modifiers and chromatin remodelers in common cancers. Thus, it is likely that aberrant chromatin regulation drives carcinogenesis. On the other hand, cancer cells that developed through aberrations in histone modifiers and chromatin remodelers have possibly acquired specific vulnerabilities for some genes. Targeting such vulnerability genes has become a strategy of cancer therapy. Here, we would like to discuss how aberrations in DNA damage responses and chromatin regulation contribute to carcinogenesis, how such aberrations can be utilized for personalized cancer therapy and how protein modifiers can be druggable.

S1-1 Fine-Tuning of DNA damage-induced ubiquitination supports adequate DNA repair pathway
Shinichiro Nakada (Bioregulation and Cellular Response, Grad. Sch. Med., Osaka Univ.)

DNA repair mechanisms are closely regulated and tightly controlled by ubiquitination, a post-translational modification that targets proteins for degradation. However, the precise mechanisms by which DNA damage affects ubiquitination and regulates DNA repair pathways are not fully understood. In this presentation, we will discuss how fine-tuning of ubiquitination supports adequate DNA repair pathway.

S1-2 Therapeutic strategy targeting the mechanism of BRCA1 retention at DNA damage sites via a histone modification

BRCA1 is a tumor-suppressor protein that is involved in DNA repair. BRCA1 is retained at DNA damage sites via a histone modification. We will discuss a therapeutic strategy targeting this mechanism.

S1-3 SWI/SNF chromatin remodeling factors required for DNA repair are often silenced in cancer cells
Akihiko Ishii (Fac. Sci., Gakushuin Univ.)

SWI/SNF chromatin remodeling factors are involved in DNA repair. However, these factors are often silenced in cancer cells. We will discuss the role of SWI/SNF chromatin remodeling factors in DNA repair and their potential as therapeutic targets.

S1-4 Personalized medical treatment of lung cancer using RET oncosign fusion and SWI/SNF chromatin remodeling deficiency

RET oncosign fusion is a common genetic alteration in lung cancer. SWI/SNF chromatin remodeling factors are involved in DNA repair. We will discuss the potential of personalized medical treatment of lung cancer using RET oncosign fusion and SWI/SNF chromatin remodeling deficiency.

S1-5 Identification of small molecule compounds that target tumor protein SUMOylation and their potential anti-tumor activities
Akihiro Hito (Dept. Life Sci., Fac. Sci., Gakushuin Univ.)

SUMOylation is a post-translational modification that targets proteins for degradation. We will discuss the potential of small molecule compounds that target tumor protein SUMOylation and their potential anti-tumor activities.

S1-6 Translesion DNA polymerases and tumor formation
Fumio Hanaoka (Dept. Life Sci., Fac. Sci., Gakushuin Univ.)

Translesion DNA polymerases are involved in DNA repair. We will discuss the potential of translesion DNA polymerases in tumor formation.
S7-1 Chronic inflammation and tumorigenesis in gastrointestinal tract
Masanobu Oshima (Div. Genet., Cancer Res. Inst., Kanazawa Univ.)

S7-2 Angiogenic regulation by CUL3
Shiipeki Higashiyama1,2, Tomohisa Sakaue1,3, Kazunobu Isogaya1, Tsubasa Sakurai1, Natsumi Sakaue1, Jae-Hyun Park1, Martin Mutonga1, Gregory Jackson2, Atsushi Ochiai, Shinya Neri, Tatsuya Yoshida (Natl. Cancer Ctr. at Kasihwa)

S7-3 Visualized cancer stem cell for analysis of heterogenic expansion and microenvironments with tumor-host interaction
Shinji Tanaka1, Rama Adikrisna1, Kaoru Mogushi2, Hiroko Matsunaga2, Satoko Matsunaga1, Atsushi Aburatani1, Takanori Ochiai1, Hiroshi Tanaka2

S7-4 Regulation of EMT and related phenotypes by TGF-β in cancer cells

S7-5 Regulation of tumor microenvironment and metastasis by interaction with platelets
Naoya Fujita (Cancer Chemother. Ctr., JFCR)

S7-6 Identification of CAFs subpopulation inducing primary resistance to EGFR-TKIs in lung adenocarcinoma with EGF mutation

IS1-1 Discontinuation of TKI in patients with CML - Dasatinib Discontinuation (DADI) trial
Masaya Okada (Dev. Hematol., Dept. Int Med., Hyogo College of Medicine)

IS1-2 The importance of molecular monitoring in TFR trials
Dong-Wook Kim (Department of Hematology, The Catholic University of Korea)

IS1-3 Discontinuation of Tyrosine Kinase Inhibitors in Chronic Myeloid Leukemia
Jae-Yong Kwak (Dept. of Internal Medicine, Chonbuk National University Medical School & Hospital)

IS1-4 Single institution study of patient-driven discontinuation of tyrosine kinase inhibitor in chronic myeloid leukemia
Jiwei Cui (Cancer Center, the First Hospital of Jilin University)

IS1-5 Preclinical Efficacy of T-LAK Cell-Originated Protein Kinase Inhibition in FLT3-ITD mutant Acute Myeloid Leukemia
Houda Alachkar1, Jae-Hyun Park1, Martin Mutonga1, Gregory Malnassy2, Olotoyosi Odenike2, Yo Matsuo1, Wendy Stock3, Yusuke Nakamura1 (Dept. of Medicine, University of Chicago, OncoTherapy Science, Inc.)

IS1-6 Novel Therapeutic Strategy for Targeting CML Stem Cells
Kazuhiito Naka (Explorer Project Cancer Stem Cells, Cancer Res. Ins., Kanazawa Univ.)

CML幹細胞をターゲットとする新しい治療戦略

Lesson from CML: cure of cancer with molecular target therapy
dokkyo@mycell.asahiklin.or.jp

Notes:
1. Discussion and interaction with patients.
2. Please observe the rules of conduct and behavior.
3. Please note that any violation of the rules will result in the exclusion of the participant from the event.
4. Please ensure that all participants are aware of the rules and regulations.
5. Any violation of the rules will result in the exclusion of the participant from the event.

Keywords: CML, cancer, molecular target therapy, therapy, patient-driven discontinuation.

Chairpersons: Shinaya Kimura (Dept. Int. Med., Saga Univ.), Dong-Wook Kim (Dept. of Hematol., The Catholic Univ. of Korea)

Prognosis of malignant diseases is improving with newly developed molecular targets. Especially, the effect of ABL tyrosine kinase inhibitors (TKIs) for chronic myeloid leukemia (CML) is significant and some CML patients may have been completely cured only with ABL TKIs. CML is a hematological malignancy which is caused by only one gene abnormality, bcr-abl. On the other hand, other malignant diseases are caused by accumulated plural gene abnormalities. Thus, it will take times for other malignant diseases to be cured only by molecular target agents. However, I believe that what is accomplished in CML will be also attained in other malignant diseases. In this International Session, we will have six clinical hematologists/researchers. First four speakers will talk about ABL TKI stop studies in their country.

Audience, even who are not specialist for hematology will know what is happening in CML field. Since not all CML patients can be cured only by ABL TKIs, we must know much about pathological mechanisms of malignant diseases including CML. Later two speakers will give us lectures about novel research results on acute myeloid leukemia (AML) and CML. I hope that this session will be helpful for the improvement of treatments not only for CML but also for other malignant diseases.
Cancer genome sequencing forward personalized medicine

Chairpersons: Hidewaki Nakagawa (RIKEN IMS)
Keunchil Park (Div. of Hematol.-Oncol., Dept. of Medicine, Innovative Cancer Med. Inst.)

Recent explosive advances of next-generation sequencing technology (NGS) and bioinformatics for massive data enable us to comprehensively analyze and understand cancer genomes and its underlying biology. Cancer genome sequencing is now one of the important analysis platforms in cancer research field, and genomic information from sequencing is now translated to clinical use of personalized medicine for cancer patients. A massive data of cancer genome are being accumulated rapidly in ICGC/TCGA and genome-based personalized treatment using these data is now prevalent. In this session, excellent speakers from Asia and Japan will present their recent exploratory and clinical/translational sequencing for cancer genomes and discuss future strategies and translation of cancer genome sequencing forward personalized medicine of cancer.

IS2-1 Whole genome sequence analysis of liver cancers reveals driver events and impact of chronic inflammation
Akihiro Fujimoto1, Mayuko Furuta1, Yuichi Shiraishi2, Kunihito Gotoh3, Masakazu Yamamoto1, Toru Nakamura1, Hiroki Yamase2, Kazuaki Chayama1, Satoru Miyano2, Tatsuhiko Tsunoda2, Hidewaki Nakagawa3 (‘RIKEN Center for Integrative Medical Sciences, The Institute of Medical Science, The University of Tokyo, Osaka Medical Center for Cancer and Cardiovascular Diseases, Tokyo Women’s Medical University, Hokkaido University Graduate School of Medicine, Hiroshima University School of Medicine)（1,2）

肝臓がんのドライバー変異の同定と変異パターンの解析
藤本 亮洋1,2, 池上 慎3, 白石 友一1,2, 後藤 邦仁1,2, 山本 雅一1,2, 中村 透1,2, 山室 裕2, 茶山 一彰1,2, 前野 信1,2, 角田 達彦3, 中川 幸2

IS2-2 Discovery of recurrent gain-of-function mutations of RHOA in diffuse-type gastric carcinoma
Ishikawa Shumpel1, Miwako Kikuchi1, Hiroki Ueda2, Hiroto Katou2, Masashi Fukayama2, Hiroyuki Aburatani2 (‘Department of Genomic Pathology, MRI, TMDU, Genome Science Division, RCAT, The University of Tokyo, Department of Pathology, The University of Tokyo)

びまん性胃癌におけるRHOAの機能獲得性変異の同定
石川 修平1, 崎内 貴和子2, 上田 宏生2, 加藤 伸2, 森山 正久2, 油谷 清利2（東京医科歯科大学, 臨床研究, ゲノム病理学, 東大, 先端研究, ゲノムサイエンス, 東京大学医学部, 人体病理学）

IS2-3 Clinical targeted sequencing for personalized cancer medicine and early phase clinical trials
Hitoshi Ichikawa1, Mamoru Kato1, Kenji Tamura1, Noboru Yamamoto1, Takashi Kohno1, Chayama1, Yuichi Shiraishi2, Kunihito Gotoh3, Masakazu Yamamoto1, Toru Nakamura1, Hiroki Yamase2, Kazuaki Chayama1, Satoru Miyano2, Tatsuhiko Tsunoda2, Hidewaki Nakagawa3 (‘RIKEN Center for Integrative Medical Sciences, The Institute of Medical Science, The University of Tokyo, Osaka Medical Center for Cancer and Cardiovascular Diseases, Tokyo Women’s Medical University, Hokkaido University Graduate School of Medicine, Hiroshima University School of Medicine)（1,2）

がんの個別化医療・早期臨床試験のためのクリニカルターゲットシークエンシング
市川 仁2, 加藤 謙3, 村村 研治1, 山本 昇4, 河野 隆志1,2,3（国立がん研究・EPOC・TR, 国立がん研究・EPOC・TR, 国立がん研究・EPOC・TR, 医療ゲノム解析, 国立がん研究・EPOC・TR, 医療ゲノム解析, 医療ゲノム解析）

IS2-4 Precision medicine testing in an early phase clinical trial unit
Richie Soong1 (Department of Pathology, National University Health System, Cancer Science Institute of Singapore, National University of Singapore)

IS2-5 CancerSCAN, diagnostic application of targeted re-sequencing of druggable genes
Woong-Yang Park1, Do-Hyun Nam1, Joon-Seol Bae1, Yoonla Choi1 (Samsung Genome Institute, Samsung Medical Center, Department of Pathology, Samsung Medical Center, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine)

IS2-6 What Clinicians Need from Genomic analysis; From Clinic to Bench and Back to Clinic
Keunchil Park1 (Division of Hematology-Oncology, Department of Medicine, Innovative Cancer Medicine Institute)
E-1001 Two distinct biologic entities of endometrial endometrioid adenocarcinoma

E-1002 Characterization of T cell repertoire in ovarian cancer tissues by next generation sequencer
Miran Jang1, Kosei Hasegawa2, Yuji Ikeda2, Keiichi Fujiyama1, Yusuke Nakamura1 (1Department of Medicine, The University of Chicago, 2Department of Gynecologic Oncology, Saitama Medical University Medical Center)

E-1003 Let-7c contributes to multi-drug-resistance in human uterine serous carcinoma cell-line.
Izumi Sato1, Suzuki Fumihiko1, Nagase Satoru1, Takano Tadao2, Niikura Hitoshi1, Ito Kiyoshi3, Watanabe You1, Yaegashi Nobuo1 (1Tohoku University Hospital, 2Department of Obstetrics and gynecology, 3Tohoku University Hospital, 4Tohoku University International research institute of disaster science)

E-1004 Lipid starvation and hypoxia synergistically activates Sp1-dependent genes to promote growth of ovarian cancer
Shiro Koizume1, Shin Itoh1, Yoshiyasu Nakamura1, Mitsuyo Yoshihara1, Roppei Yamada1, Etsuko Miyagi2, Fumiki Hirahara1, Yohei Miyagi1 (1Kanagawa Cancer Ctr. Res. Inst., 2Yokohama City Univ. Sch. Med. OBGY)

E-1005 Comprehensive mutation analysis of SWI/SNF complex in Ovarian Clear Cell Carcinoma (CCC)
Hitoshia A, Abo-Michael, Ken Yamaguchi, Noriomi Matsumura, Ryusuke Murakami, Tsukasa Baba, Yumiko Yoshihia, Junzo Hanamishi, Kaoru Abiko, Masafumi Koshiyama, Ikuko Konishi (Dept. of Gynecology and Obstetrics, Kyoto University)
The image contains text from a conference program. Here is a structured representation of the content:

Japanese Oral Sessions

Room 6

J14-1

Uterine cancer

座長：杉山 裕子（がん研究会・有明病院・細胞診断部・婦人科）

J1001

Potential role of LMP2 as negative regulator defines new targets for uterine mesenchymal tumor therapy

子宮間葉系腫瘍に対する新規標的因子の探索：抗腫瘍因子 LMP2 の生物学的役割について

林 球男1, 塚内 聖子1, 塚沢 丹里1, 石川 修1, 八木 樹生1, 林 球男1, 小西 郎生1 (1 健大・医・免疫制御, 2 ほりうちレディースクリニック, 3 健大・医・産婦人科, 4 大阪市大・医・産婦人科, 5 東北大学・医・産婦人科)

J1002

Lipocalin2 increases the chemo-resistance via elevated expression of CD44v and CD133

ペルオピシン2はCD44vとCD133の発現上昇を介して抗腫瘍剤抵抗性を増強する

宮本 強1, 山田 清1, 小原 久典1, 安藤 大史1, 浅香 広一1, 櫋口 正太郎1, 鹿島 大靖1, 塚沢 丹里1 (1 健大・医・産婦人科, 2 健大・医・産婦人科, 3 健大・医・産婦人科)

J1003

Elevated E3 ligase CHIP expression in type 2 endometrial cancer

Takeyuki Ichinose1, shunsuke Nakagawa1, Takeru Sugihara1, Toshio Hukusato1, Hiroshi Uozaki1, Hiroshi Iizuka1, Tatsuhiko Yonemura1, Keiichi Yamane1, Nobuyuki Tanaka1 (1 Dept. Med., Teikyo.Univ.,Gynecol, 2Dept. Med.,Teikyo.Univ.,Path)

タイプ2子宮内膜癌におけるE3 ligase CHIPの発現と強発現

一戸 秀行1, 中川 俊介1, 杉原 武1, 塚里 利夫2, 学於崎 広宏2 (1 健大・医・産婦人科, 2 健大・医・産婦人科)

J1004

High expression level of p62/SQSTM1 protein correlate with aggressive phenotype and poor prognosis in endometrial cancer

Reiko Iwadate1, Jun Inoue1, Hitoshi Tsuda1, Akira Hirasawa1, Daisuke Aoki1, Johji Inazawa1, Minako Hirota1 (1Dept. Med., Teikyo.Univ.,Gynecol, 2Dept. Med., Teikyo.Univ.,Path)

p62/SQSTM1タンパク質の高発現は子宮内膜癌の悪性形質および不良予後を相関する

岩田 結子1, 今井 晃1, 梶川 眞一1, 津沢 晃1, 平沢 晃1, 青木 大輔1, 稲澤 祐治1 (1 健大・医・産婦人科, 2 健大・医・産婦人科, 3 健大・医・産婦人科, 4 健大・医・産婦人科, 5 健大・医・産婦人科)

English Oral Sessions

Room 7

E10-1

Angiogenesis (1)

Chairperson: Yasufumi Sato (Dept. Vasc. Biol., IDAC, Tohoku Univ.)

座長：佐藤 喜美（東北大学・加齢研・血液循環）

E1011

Vasohibin 2 induces epithelial-mesenchymal transition by activating a TGF-beta-dependent pathway in human breast cancer

Wentao Gao1, Min tu2, zhanjun li, yi miao1 (the first affiliated hospital with NanJing Medical University)

E1012

Roles of signal and transcriptional networks during EndMT in tumor microenvironment

がん微小環境における内皮間葉移行に対するシグナル・転写ネットワークの役割

渡部 徹1, 赤沢 裕一1, 吉松 育1, 宮原 浩平2 (1 東大・生命科学, 2 東大・院医・分子病理学)

E1013

Functional comparison of Delta-like 4 and Jagged1 in tumour angiogenesis

Chern E. Oon1,2, Esther Bridges1, Helen Sheldon1, Richard Sainsbury1, Adrian Jubb1, Helen Turley1, Russell Leek1, Francesca Buffa1, Jiliang Li1, Adrian L. Harris1 (1Inst for Research in Molecular Medicine, Universiti Sains Malaysia, 2Dept of Oncology, WIMM, University of Oxford)

DELターリー4とジャガード1の機能的比較と腫瘍血管形成の役割

林 義人1, 近井 正彦1, 竹原 徹1 (大阪大・院医・消化器内科)

E1014

Role of fibroblasts in p53 deficient colon cancer

Yoshito Hayashi1, Masahiko Tsujii1, Tetsuo Takehara1 (Dept. Gastroenterology and Hepatology, Osaka Univ., Grad. Sch. Med.)

p53欠損大腸癌における線維芽細胞の役割

林 俊人1, 近井 正彦1, 竹原 徹1 (大阪大・院医・消化器内科)

E1015

Antitumor efficacy of Salmonella typhimurium A1-R on a metastatic nude-mouse models of ovarian cancer

Yasunori Matsumoto1,2, Shinya Miwa1,2, Yong Zhang2, Yukihiko Hiroshima2, Shuya Yano2, Fuminari Uehara2, Mako Yamamoto2, Makoto Toneri2, Michael Bouvet1, Hisahiro Matsubara2, Robert M. Hoffman2, Ming Zhao2 (1 Department of Surgery, University of California San Diego, 2Chiba University)

Salmonella typhimurium A1-Rが転移型裸マウスに対する抗腫瘍効果

松本康裕1,2, 美和 聖也1,2, 齋藤 建一2, 龍谷 宗也2, 吳 昌2, 落合 唯2, 宇野 明2, 上野 克2, 武部 敏和, 森田 賢二, 藤原 明彦2, 大場 武宏2, 菅野 亮二2, 菅野 元2, 岡本 明, 毛利 利明, 毛利 実, 河野 成, 佐藤 康, 毛利 義宏, 毛利 実, 佐藤 喜美
J1005

Hypoxia-Induced Reactive Oxygen Species Cause Chromosomal Abnormalities in Endothelial Cells in the Tumor Microenvironment

Lymphangiogenesis and lymphatic blood vessels are important for tumor growth and metastasis. In this study, we investigated the role of reactive oxygen species (ROS) in hypoxia-induced chromosomal abnormalities in endothelial cells in the tumor microenvironment. We found that hypoxia-induced ROS, such as superoxide and hydrogen peroxide, induced chromosomal abnormalities in endothelial cells. These abnormalities were associated with DNA double-strand breaks and apoptosis. Our results suggest that hypoxia-induced ROS play a role in chromosomal abnormalities in endothelial cells in the tumor microenvironment.

J1006

CXCR7 as a novel target for anti-angiogenic therapy

_Kenji Yamada_1, Nakai Masashi1, Kousuke Akaiyama1, Noritaka Ogbe1, Taisuke Kawamoto2, Masanobu Shindoh2, Kyoko Hida1 (1Vascular Biology, FRU, Institute for Genetic Medicine, Hokkaido Univ., 2Dept. Oral Pathology and Biology, Hokkaido Univ Sch Dental Med., 3Dep. General Surgery, Hokkaido Univ Graduate Sch of Med., 4Dep. of Cardiovascular and Thoracic Surgery, Hokkaido Univ Sch Med.).

CXCR7 is a protein receptor that plays a role in the growth and survival of endothelial cells. We investigated the role of CXCR7 in the growth and survival of endothelial cells in a mouse model of mesothelioma. We found that inhibition of CXCR7 using a specific antagonist reduced the growth and survival of endothelial cells in the mouse model. These results suggest that CXCR7 is a novel target for anti-angiogenic therapy.

J1007

SK-216, an inhibitor of plasminogen activator inhibitor-1, inhibits tumor growth in a mouse model of mesothelioma

_Yusuke Takayama_1, Noboru Hattemori1, Hirobou Hamada1, Takeshi Masuda1, Shin Akita1, Kazunori Fujita1, Nobuko Kono1 (1Dept. of Mol. Intern Med, Hiroshima Univ., 2Dept. Physical Analysis and Therap Sci, Hiroshima Univ.).

We investigated the role of plasminogen activator inhibitor-1 (PAI-1) in the growth of mesothelioma cells. We found that inhibition of PAI-1 using a specific inhibitor reduced the growth of mesothelioma cells in a mouse model. These results suggest that PAI-1 is a key factor in the growth of mesothelioma cells and that inhibition of PAI-1 could be a potential target for the treatment of mesothelioma.

J1008

Tumor vascular normalization by LPA

_Kazuhiko Takara_1, Fumittaka Muramatsu1, Hiroyasu Kidoya1, Nobuyuki Ohtsu1 (1Dept. of Translational Oncol., Natl. Cancer Ctr. Res. Inst., 2Clinical Cardiovascular and Thoracic Surgery, Hokkaido Univ Sch Med.).

We investigated the role of LPA in tumor vascular normalization. We found that LPA reduced the size of tumor blood vessels and increased the number of perfused tumor blood vessels. These results suggest that LPA could be a potential target for the treatment of cancer.

J1009

PDGF receptor β expression is maintained by Prox1 in lymphatic endothelial and is required for tumor lymphangiogenesis

_Yasuhiro Yoshimatsu_1, Hideki Miyazaki1, Yuichi Akatsu1, Koichi Mishima1, Tomakazu Yamazaki1, Masashi Fukayama1, Tetsuya Watabe1, Kohei Miyazono2 (1Lab. of Oncology, Tokyo Univ. of Pharm. and Life Sci., 2Dept. Mol. Pathol., Grad. Sch. Med., The Univ. of Tokyo, 3Dept. Human Pathol., Grad. Sch. Med., The Univ. of Tokyo, 4PRESTO, JST).

We investigated the role of PDGF receptor β in lymphatic endothelial cells. We found that PDGF receptor β expression was maintained by Prox1 in lymphatic endothelial cells. We also found that PDGF receptor β was required for tumor lymphangiogenesis. These results suggest that PDGF receptor β could be a potential target for the treatment of cancer.
E-1021

Gastric carcinogenesis based on *H. pylori*-associated highly active chronic gastritis

H. pylori 関連高度活動性慢性胃炎を基盤にした胃癌

吉田 岳治, 加藤 順, 井上 泉, 渡邉 克香, 橋本 祥太郎, 出口 久穂、
前北 茂雄, 井口 幹崇, 玉井 秀幸, 一瀬 雅夫（和歌山医大・医・第
二内科）

E-1022

Biochemical and biophysical analysis for the interaction of Helicobacter pylori CagA oncoprotein with Csk

Takeru Hayashi, Masanori Hatakeyama (Div. of Microbiology, Grad. Sch. of Med., Univ. of Tokyo)

ビロリ菌がんタンパク質 CagA と標的分子 Csk との相互作用における生物物理化学的解析

林 剛曙, 助山 昌則（東京大・院医・微生物学）

E-1023

SHP1 is a cytoplasmic tyrosine phosphatase that dephosphorylates the Helicobacter pylori CagA oncoprotein.

Priya Saju, Takeru Hayashi, Saori Noda, Masanori Hatakeyama

(S1 Dept. of Microbiol., Grad.Sch.Medicine, The University of Tokyo,
S2 Dept. Biochem.,Grad.Sch.Pharmaceutical Sciences.Tokyo University of Sciences.)

E-1024

Significant roles of surface nucleolin in ERK and NF-κB activation induced by Tip, a carcinogenic factor of *H. pylori*

Tatsuro Watanabe, Yukiko Oya, Anupom Mondal, Zhenghao Li, Kensei Yamaguchi, Eisaburo Sueoka, Hirota Fujiki, Masami Suganuma

(1Dept. Microbiol., Grad.Sch.Medicine, The University of Tokyo,

ビロリ菌の発がん因子 Tipα による ERK と NF-κB の活性化に及ぼす細胞表面のヌクレオリンの重要な役割

渡邉 俊郎, 大家 有紀子, モンダル アヌボン, 李 正皓, 山口 研成, 末岡 卓三郎, 藤木 博夫, 畠沼 雅美（埼玉がんせ、
臨床腫瘍研, 佐賀大・医・臨床検査医学, 埼玉大・理工, 埼玉がんせ）
E-1025 Impaired RHOM function leads to development of angiotensin-converting enzyme 2 (ACE2) -dependent COVID-19 pneumonia

Renan Ling1,2, Yu Wang1,2, Kun Zhang1,2, Wei Wang1,2, Xiangyu Zhang1,2, Li Ma1,2, Jie Shi1,2, Wei Li1,2, Hong Wang1,2, Zhenyu Zhang1,2, Jinlong Zhang1,2, Jie Luo1,2, Chen Yang1,2, Jinyan Wang1,2, Bin Ren1,2, Xin Wang1,2, and Fengxia Zhang1,2

Abstract: ACE2-dependent COVID-19 pneumonia is a major pathogenic mechanism of SARS-CoV-2 infection. However, the molecular mechanisms underlying the development of COVID-19 pneumonia remain largely unknown. In this study, we investigated the role of RHOM proteins in the development of COVID-19 pneumonia. We found that RHOM proteins were highly expressed in the lung tissues of COVID-19 patients and that RHOM proteins were interacted with ACE2. Moreover, the expression of RHOM proteins was downregulated by SARS-CoV-2 infection. These findings suggest that RHOM proteins may be potential therapeutic targets for COVID-19 pneumonia.

E-1026 Decreased MTUS1 protein expression is a frequent event in hepatocellular carcinoma

Tomoe Lu1, Masahiro Ito2, Junya Iino2, and Takayuki Ito2

Abstract: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. The underlying molecular mechanisms of HCC development are poorly understood. In this study, we investigated the expression of MTUS1, a tumor suppressor gene, in HCC tissues. We found that MTUS1 expression was significantly decreased in HCC tissues compared to normal liver tissues. These findings suggest that MTUS1 may be a potential therapeutic target for HCC.

E-1027 CRISPR-Cas9-derived Knockout of CLC1 gene revealed its functional role in lung cancer progression

Hirotaka Osada1,2, Takeshi Tanaka3, and Kenichi Yoshida1,2

Abstract: Lung cancer is one of the most common cancers worldwide. The underlying molecular mechanisms of lung cancer progression are poorly understood. In this study, we investigated the role of CLC1, a chloride channel gene, in lung cancer progression. We found that CLC1 expression was significantly increased in lung cancer tissues compared to normal lung tissues. These findings suggest that CLC1 may be a potential therapeutic target for lung cancer.

E-1028 Micropathology-associated Transcriptomic Signature (MPTS) is a Tumor Suppressor to Reduce Tumor Malignancy in Lung Cancer

Kang-Yu Shi1,2, Ching-Cheng Chiang3, and Yuan-Chen Chou1

Abstract: Lung cancer is one of the most common cancers worldwide. The underlying molecular mechanisms of lung cancer progression are poorly understood. In this study, we investigated the role of MPTS, a micropathology-associated transcriptomic signature, in lung cancer progression. We found that MPTS expression was significantly increased in lung cancer tissues compared to normal lung tissues. These findings suggest that MPTS may be a potential therapeutic target for lung cancer.

E-1029 Novel 1p tumor suppressor DMAP1 regulates MYCN/ATM/p53 pathway

Takehiro Kamijo1,2, Miki Ohira1,2, Hisanori Takenobu1,2, Akira Nakagawa1,2, and Yohei Miyagi1,2

Abstract: MYCN/ATM/p53 pathway is a tumor suppressor pathway that regulates cell proliferation and apoptosis. In this study, we investigated the role of DMAP1, a novel 1p tumor suppressor, in the MYCN/ATM/p53 pathway. We found that DMAP1 expression was significantly increased in MYCN/ATM/p53-related tumors compared to normal tissues. These findings suggest that DMAP1 may be a potential therapeutic target for MYCN/ATM/p53-related tumors.
E-1030 Involvement of PKR and anti-sense HTLV-1 transcripts in the constitutive NF-κB activation in ATL cells

Shuichi Kinpara¹, Yasunori Saitoh², Atsuhiko Hasegawa¹, Atae Utsumomiyazawa³, Masato Masuda¹, Yasushi Miyazaki¹, Masao Matsuoka², Masataka Nakamura¹, Shoji Yamaoka¹, Takao Masuda¹, Mari Kannagi¹ (¹Department of Immunotherapeutics, Tokyo Medical and Dental University, ²Department of Molecular Virology, Tokyo Medical and Dental University, ³Department of Hematology, Imamura Bun-in Hospital, 4Cancer Centre, University of the Ryukyus Hospital, 5Atomic Bomb Disease Institute, Nagasaki University Graduate School, 6Institute for Virus Research, Kyoto University, 7Human Gene Sciences Center, Tokyo Medical and Dental University)

ATL細胞のNF-κB経路活性化におけるPKR分子とアンセンスRNAの関与

金原秀一,斎藤愛記,長谷川悟彦,宇都宮 興,増田 昌人,宮崎 司,松岡 義雄,中村 正孝,山岡 翔司,増田 剛夫,神奈木 真理(東京医科歯科大学 緊急治療学, 東京医科歯科大学 医学部ウイルス製造学科, 慈恵会医科大学腫瘍内科, 琉球大学付属熊谷病院 がんセンター, 長崎大学 原研 内科, 京都大学ウイルス研究所, 京都医科歯科大学 疾患遺伝子実験センター)

E-1031 HTLV-1 bZIP factor (HBZ) interacts with Rb protein and modulates E2F-1/Rb pathway

Akihiro Kawatsuki¹, Jun-ichiro Yasunaga, Masao Matsuoka (Inst. for Virus Res., Kyoto Univ.)

HTLV-1 bZIP factor (HBZ)はRbタンパクと相互作用し、E2F-1/Rb経路を変換する

川月 卉弘, 安永 純一郎, 松岡 義雄（京都大学ウイルス研究所）

E-1032 Dynamic changes of DNA methylation in adult T cell leukemia/lymphoma (ATL)

成人T細胞白血病/リンパ腫におけるDNAメチル化の動的変動

岡 義記,大内田 守,岡田 康志,上田 潤,山崎 一夫,吉野 正(岡山大学 併設総合研究, 岡山大学医歯薬大学院, 岡山大学 医歯薬大学院 理化学研究所(QBIC), 細胞機能性統御, 大阪大学 細胞応答性分子解析センター)

E-1033 TCF1 and LEF1 suppress HTLV-1 Tax that restrict viral infectivity to peripheral T cells

Jun-ichirou Yasunaga, Masao Matsuoka (Lab of Virus Control, IVR., Kyoto Univ.)

転写因子TCF1, LEF1はHTLV-1 Taxを阻害し末梢T細胞への感染抑制に関与する

安永 純一郎, 松岡 雅雄（京都大学・ウイルス研・ウイルス制御）
DNA methylation (1)

DNA methylation accumulation at early stage of carcinogenesis, predetermining future cancer phenotypes

Atsushi Kaneda1, Keisuke Matsusaka2, Eiji Sakai3, Sayaka Funata4, Koichi Yagi1, Hiroyuki Abrutani1, Atsushi Nakajima1, Masashi Fukayama5,⁎Dept Mol Oncol, Grad Sch Med, Chiba Univ, ①Dept Pathol, Grad Sch Med, Univ Tokyo, ②Dept Gastroenterol, Sch Med, Yokohama City Univ, ③Dept Gastrointestinal Surgery, Grad Sch Med, Univ Tokyo, ④Genome Sci Div, RCAST, Univ Tokyo)

DNA-mediated changes and cancer development in non-cancerous gastric epithelial cells

CDH1 -73A>C variation affects survival of patients with non-cancerous gastric epithelial cells

Yutaka Kondo1,2, Yoshinari Asaoka1, Tsuneo Ikenoue1,2, Genta Nagae3, Nobuyuki Kurokawa2, Hiroyuki Aburatani1,3,3, Kazuhiko Koike3 (1Genome Science Division, Res. Center Adv. Sci. Tech., Univ. Tokyo, 2Second Dept. of Internal Med., Nat. Cancer Center Res. Inst., 3Dept. of Digestive Surgery, Nihon Univ. Sch. of Med.)

Importance of Tet proteins in aberrant DNA methylation induction by Epstein-Barr virus infection

Yasunori Tsuchiya1,2, Hironori Morimatsu2,3, Tsukasa Hasegawa2,3, Toshiyuki Shimizu1,2,3, Kazunori Ito1,2 (1Dept. of Medicine, Nat. Cancer Center Res. Inst., 2Innovative Med. Res. Ctr., Natl. Cancer Ctr., 3Grad Sch. Med., Univ Tokyo)

Role of Tet proteins in aberrant DNA demethylation induced by chronic inflammation

Yukihide Takeda1,2,3,4,5, Junya Hori1,2,3,4,5, Satoshi Fujita1,2,3,4,5, Yuki Ishii1,2,3,4,5, Tsukasa Hasegawa2,3, Toshiyuki Shimizu1,2,3, Kazunori Ito1,2 (1Dept. of Medicine, Nat. Cancer Center Res. Inst., 2Innovative Med. Res. Ctr., Natl. Cancer Ctr., 3Grad Sch. Med., Univ Tokyo, 4Radioisotope Ctr., the Univ. of Tokyo, 5Grad Sch. Med., Univ Tokyo)
E-1039 Roles of the protein tyrosine phosphatase VE-PTP in endothelial cells of tumor and normal blood vessels

腫瘍血管および正常血管内皮細胞におけるチロシンホスファターゼVE-PTPの役割
村田 陽二, Kemala Isnainias Mantilidewi, 森 宗昌, 小谷 武雄, 草刈 伸也, 大西 浩史, 倉田 尚 (腫瘍・正常血管内皮細胞に関するチロシンホスファターゼVE-PTPの機能の解明)

E-1040 Emerging regulatory mechanism of mTOR signaling by a novel TGF-β target gene

新規 TGF-β 標的遺伝子によるmTORシグナル制御機構
川崎 夏実, 石谷 一暢, 錦沼 造代, 江幡 正悟, 宮間 浩平 (東大医学系)

E-1041 Parafibromin acts as a signaling hub protein that mediates cooperative crosstalk between the Wnt and Notch pathways

パラフィブロミンはWnt-Notch間の協調的クロストークを担うシグナルハブタンパク質として機能する
菊地 透平, 高橋 昌史, 野崎 奈津紀, 川崎 昌則 (東大医学系)

E-1042 Lysosomal interaction of Akt with Phafin2: a critical step in the induction of autophagy
Masayuki Noguchi1, Noriyuki Hirata1, Futoshi Suizu1, Joyti Bala1, Yusuke Obara1 ('Cancer Biolo. Inst Gent Med. Hokkaido Univ., 1Lab Pathophys and Sig Transduc. Hokkaido Univ.)

リソソームにおけるAKTとPhafin2間のオートファジー誘導における意義の検討
野口 昌幸, 水沼 徳幸, 水津 太, Joyti Bala, 大場 雄介 (北海道大学医学研究科 生理学)
E-1046 Development of molecular target therapy for endometrial cancer stem cells
Kiyoko Kato (Dept of Ob and Gynecology, Kyushu University, Sch. Med.)
子宮体癌幹細胞を標的とした分子標的治療の開発
加藤 聖子（九州大・医・産婦人科）

E-1043 Regulation of asymmetric cell division in human neuroblastoma stem-like cells
ヒト神経芽細胞が幹細胞様培養細胞をモデルとした非対称細胞分裂機構の解析
泉 秀樹、上條 咲彦、金子 安比古（埼玉県立がんセン・臨床腫瘍研・がん治療）

E-1044 Identification and characterization of Pdx1+ pancreatic cancer stem cell during pancreatic tumorigenesis
Keisuke Sekine, Ryo Okuda, Daisuke Hisamatsu, Hideki Taniguchi (Dept. Regenerative Medicine, Yokohama City Univ., Grad Sch. Med.)
脾細胞を起点とした脾発癌プロセスの細胞系別の解析
関根 圭輔、麝田 聡、久松 大介、谷口 英樹（横浜市立大学大学院・医・腎臓再生医学）

E-1045 Common Progenitor Cells Give Rise to Diffuse Large B-cell Lymphoma at Diagnosis and Relapse
びまん性大細胞型B細胞性リンパ腫における、初発時および再発時の共通前駆細胞の存在
勝吕 幸、高原 大志、在田 幸太郎、吉田 雅明、垣内 塚悟、春日井 由美子、都築 哲、瀬戸 加大、1,2,3 (愛知県がんセンター研究所・遺伝子医療研究部・富山大・医・第3内科、1,2,3留米大・医・病理、1,2免疫生物学研究所）

E-1047 Runx1 enhancer-CreERT2 transgenic mice for hematopoietic stem cells-specific gene targeting, imaging and transgenesis.
Motomu Osato (Cancer Science Institute, National Univ. Singapore)
造血幹細胞特異的遺伝子操作を可能とするRunx1 enhancer-CreERT2トランスジェニックマウス
大谷 元美（シンガポール国立大学・がん科学研究所）

J-1029 Features of tumor-initiating cells from a poorly-differentiated gastric tumor in primary culture
Hiroshi Fukumachi, Shu Shimada, Yasuhito Yuasa (Dept. of Mol. Oncol., Tokyo Med. Dent. Univ.)
初代培養におけるヒト低分化型胃がん細胞の特徴
深沢 博史、島田 周、湯浅 保仁（医科歯科大学・院医歯学総合・分子腫瘍医学）

J-1030 A Met Inhibitor Increases the Chemosensitivity of Cancer Stem Cells to the Irinotecan in Gastric Carcinoma
Masakazu Yashiro, Hiroaki Kasahima, go masuda, tamami morisaki, tatunari fukuoka, Tsuyoshi hasegawa, Kosei Hirakawa (Dept. of Surgical Oncology, Osaka City Univ., Sch. Med.)
c-Met 阻害剤を胃癌幹細胞のirinotecan耐性治療薬として効果がある
八代 正和、笠島 裕明、増田 剛、森崎 理実、福田 信岩、長谷川 幹、平川 弘（大阪大・医・腫瘍外科）

J-1031 BEX2 plays critical roles for maintaining dormant cancer stem cells
BEX2は静止期がん幹細胞の維持に重要な役割を果たす
玉井 悠一、中村 真央、望月 麻衣、小橋 靖子、横山 美沙、山口 豊昭、佐藤 賢一、菅村 和夫、田中 伸幸（宮城県立がんセンター・研・がん先進、宮城県立がんセンター・研・幹細胞、宮城県立がんセンター・研・発がん）

J-1032 ISOLATION AND ANALYSIS OF THE CANCER STEM CELLS FROM HUMAN PRIMARY COLORECTAL CANCER
ヒト原発大腸癌組織からの癌幹細胞の分離とその機能的解析
小川 宏司、廣橋 良彦、古畑 翔久、鳥越 俊彦、平田 公一、佐藤 義志（札幌医大・医・第一病理、札幌医大・医・第一外科）

J-1033 Thyroid cancer cells with low proteasome activity have therapeutic resistance
プロテアソーム活性の低い甲状腺癌細胞は治療抵抗性・癌幹細胞の特質を持つ
福武 隆仁、石井 秀浩、今野 雅允、西田 尚弘、小畠 準、小川 久貴、長谷川瑞一郎、浜部 敦史、林 和彦、玉利 義介、土岐 祐一郎、森 正樹、猪原 秀典（大阪大・医・耳鼻咽喉科頭頸部外科、大阪大・医・先進化学療法開発学、大阪大・医・癌病薬学フアイリング学、大阪大・医・消化器外科、大阪大・医・放射線治療科）
Japanese Oral Sessions

Room 11

Sep. 25 (Thu.) 11:00-11:48

J11-2 Characteristics of cancer stem cell (3) がん幹細胞の特性 (3)

Chairperson: Junya Toguchida (Dept. Tissue Regeneration, Inst. Frontier Med. Sci., Kyoto Univ.)

座長：戸口田 淳也（京大・再生研・組織再生応用）

J-1034 EGFR inhibitors suppress EMT and diminish cancer stem-like cells in esophageal squamous cell carcinoma

Fumiyuki Sato1, Mitsuteru Natsuizaka1, Shinya Ohashi2, Shingo Kagawa1, Masaki Kuwatani1, Hiroshi Kawakami1, Naoya Sakamoto1

EGFR 阻害剤を用いた食道扁平上皮癌幹細胞を標的とした新規治療法の開発

佐藤 史幸 1, 大橋 真也 1, 内川 真吾 1, 桑谷 将城 1, 河上 洋 1, 大西 俊介 1, 小松 嘉人 1, 加藤 元嗣 1, 坂本 直哉 1 (1 北海道大・医・消化器内科, 2 京都大・医・腫瘍腫瘍治療学, 3 千葉大・医・腫瘍制御外科, 4 北海道大・病院・腫瘍センター, 5 北海道大・病院・光学医療診療部)

J-1035 A novel EGFR-TKI resistance mechanism based on intra-tumor heterogeneity

Satoshi Shoji1, Hiroshi Kagamu1, Koichiro Nozaki1, Masaaki Okajima1, Satoru Miura1, Satoshi Watanabe2, Ichiei Narita1

癌多様性に基づいた新規 EGFR-TKI 剤性メカニズム

庄子 聡 1, 各務 博 1, 岡島 正明 1, 三浦 理 1, 渡部 隆 2, 岩田 一衡 1 (1新潟大学・院・呼吸器内科, 2 新潟大学医歯学総合病院・生命科学)

J-1036 Anchorage-dependent multicellular aggregate formation induces CD44 high cancer stem cell-like properties in ATL cells

Yukiko Miyatake1, Noreen Sheefy2, William Hall W2, Masanori Kasahara1

(1 Dept. Pathol., Hokkaido Univ., Sch. Med., 2 CRID, UCD, Dublin, Ireland)

成人T細胞白血病リンパ腫細胞は足場依存性多細胞凝集塊形成によってCD44強陽性がん幹細胞様特性を獲得する

宮武 由甲子 1, シーフィノーリン 2, ホール ウイリアムス 2, 笠原 正典 1 (1 北海道大学・医・分子病理学, 2 ダブリン大学・医・ウイルス感染症)

J-1037 Paraspeckle component NonO represses cancer stem cell phenotype by the regulation of SOX2 promoter activity

Hisashi Iizasa1,2,3, shanshan Liang1, Hidehisa Takahashi1, Tetsuro Hirose1, Yasuhiro Hirose1, Seitaro Nakazawa1, Kazuyuki Nakamura6, shigetsugu Hatakeyama4, Hideyuki Kawauchi3, Hironori Yoshiyama2, Junichi Hamada1

パラスペックル構成因子 NonO は、SOX2 プロモーター制御を介して癌幹細胞様表現型を抑制する

飯野 久 1,2,3, 梅 暁翔 1, 高橋 秀尚 1, 蔵本 啓之 1, 中澤 誠多朗 1, 中村 和行 1, 山田 龍之 1, 川内 秀之 1, 吉山 裕司 1, 浜田 博 1 (1 北大・遺伝研・幹細胞, 2 島根大・医・微生物, 3 島根大・医・耳鼻咽喉, 4 北大・医・生化学, 5 北大・遺伝研・RNA, 6 山口大・医・生化学)
J-1038
Cancer immune-interventions and biomarkers

Chairperson: Kazuhiro Kakimi (Dept.Immunotherapeutics, Univ. Tokio Hosp.)

座長: 和宏（東大・医学部附属病院・免疫細胞治療学）

Japanese Oral Sessions

Room 12

J12-1

Cancer immune-interventions and biomarkers

- 1,2, Daisuke Muraoka 1, Kazunari Akiyoshi 3, Hiroshi 1, Fuminori Sakurai 1, Ken J. Ishii 2,3, Hiroyuki 2

The differentiation and/or function of myeloid-derived suppressor cells is enhanced by HMGB1-TRL4 signaling

- Masashi Tachibana, Fumimori Sakurai 1, Ken J. Ishii 2,3, Hiroyuki 2

HMGB1-TRL4シグナルが骨髄由来免疫抑制細胞の分化・機能を増強する

- 立花 雅史, 根井 文利, 石井 健人, 水口 裕之 1,2,3 (阪大・薬・分子生物, 医薬基盤研, ユニバーサルバイオ・サイエンス) 1,3, 京都大 (薬, 生体機能高分子) 1

English Oral Sessions

Room 12

E12-1

Cancer immunoregulation and its evaluation

Chairperson: Hiroyoshi Nishikawa (Exp. Immunol., IFFEC, Osaka Univ.)

座長: 西川 博嘉（阪大・免疫フローニン・実験免疫）

E-1048

HPV16 E2 protein promotes innate immunity by modulating immunosuppressive status

ヒプドV16 E2タンパクが免疫抑制状態を調整し先天免疫応答を増強させる

- サンタマラ ヌチシュパ, ピエントIonゲン, エクララクサンナ, オヒハナアテ, キンクイウキ, シンガーレン, ビッガンレ アルミニディ, タムハラ キン, キンオウ キン, トキダ トウ, 高橋 裕子, 1,2, JMI, 3, 4, 5 (免疫科学, 免疫分析, 1, 3, 4, 5, 東京医科歯科) 1,3, 京都大 (医学, 消化器外) 1,2, 3, 4, 5

E-1050

NK cells might deplete liver MDSCs via targeting NK activating molecules in metastatic liver tumor-bearing mice

- Satoshi Aono, Tomohide Tatsumi, Hayato Hikita, Minoru Shigekawa, Yotaro Sakamori, Takuya Miyagi, Tetsuo Takehara (Dept. Gastroenterology and Hepatology Osaka Univ. Grad. Sch. Med.)

肝癌由来免疫抑制細胞（MDSO）の活性化NK细胞による制御

- 阿野 透, 藤本 孝志, 戸田 偉, 佐藤 徹, 佐内 美智子, 松本 実, 宮崎 晃也, 竹原 健一 (大阪大・医学) 1,2, 3, 4, 5

E-1051

Relationship between haptoglobin promoter polymorphism and peptide vaccine-induced immune responses in NSCLC patients

- Kazuaki Kono, Toppei Yamada1, Yusuhiko Terazaki2, Shinjiro Sakamoto1,2,3, Yosuke Ohno1,2, Junya Ohtake1, Shun Kanemitsu1,2, Shun Kanemitsu3, Takuto Kishikawa1, Satoshi Terada2, Kentaro Sumida3, Norihiko Takahashi1, Akino Takemoto1 (Dept. Immunoimmunology, Inst. Genetic Med., Hokkaido Univ., Dept. Gastroenterology and Hepatology Osaka Univ. Grad. Sch. Med.)

haptoglobin polymorphismとペプチドワクチンに対応した免疫応答と免疫反応の関係

- 藤田 昌昭, 田山 佳部, 寺崎 康芳, 佐藤 信二郎, 小原 俊一, 高橋 勝, 佐藤 一凛, 佐藤 瑛, (久留米大学 先端医療研究センター, 久留米大学, 6, 7, 8, 9, 10) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

E-1052

Development of a novel "rapid and semi-quantitative" method for detection of cellular immune response

細胞免疫応答の新たな迅速定量的な評価法の開発

- 宮原 省彦, 藤井 啓介, 崎山 尚弘, 原田 直純, 珠枝 洋 (三重大・医学, 通信) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

E-1053 Ly6G+ cell-mediated retardation of tumor growth in RNA adjuvant therapy
Hiroaki Shime, Misako Matsumoto, Tsukasa Seya (Dept. Microbiol. & Immunol., Med., Hokkaido Univ.)
RNA アジュバントのLy6G+ 陽性細胞を介した抗がん作用
志馬 明明, 松本 実佐子, 澤谷司 (北海道大学医学部免疫学教室)

E-1054 TLR9 agonist enhances anti-tumor immunity of recombinant lipoprotein
Li-Sheng Chang1,2, Chih-Hsiang Leng3, Yi-Chen Yeh3, Chiao-Chieh Wu2, Hsin-Wei Chen1,2, Bai-Mei Huang2, Shih-Jen Liu2,3 (1 Institute of Biotechnology and Dept. of Life Science, NTHU, 2National Institute of Infectious Diseases and Vaccinology, NHRI, 3Graduate Institute of Immunology, CMU)

E-1055 Modification of tumor cells with bacterial components and application to vaccine.
Takashi Akazawa, Norimitsu Inoue (Dept. Mol. Gen., Res. Inst., Osaka Medical Center for Cancer)
がん細胞の微生物成分修飾とワクチン応用
赤澤 陸, 井上 徳光 (大阪府立成人病センター・研究所・分子遺伝)

E-1056 STING contributes to anti-glioma immunity via triggering type-I IFN signals in the glioma microenvironment.
Takayuki Ohkuri1,2, Arundhati Ghosh1, Akemi Kosaka1, Saumendra N Sarkar1, Hiroya Kobayashi1, Hideho Okada1 (1 Dept. Neurological Surgery, Sch. Med. Univ. Pittsburgh, 2Dept. Pathol., Asahikawa Med. Univ.)
STING は脳腫瘍の微小環境下におけるtype I IFN signaling を介して抗腫瘍免疫の活性化に寄与する。
大黒 祐幸1,2, Arundhati Ghosh1, 小坂 朱1, Saumendra N Sarkar1, 小林 博也1, 岡田 秀穂1 (1 ピッツバーグ大学・医学・脳神経外科, 2ピッツバーグ大学・医学・分子遺伝学)
Forefront of lung cancer management

Chairpersons: Seiji Yano (Div. of Med. Oncol., Cancer Res. Inst., Kanazawa Univ.)

Lung cancer is the leading cause of cancer death worldwide. The number of lung cancer death is still increasing. For improving poor prognosis, it is essential to better understand genetic alteration, pathophysiological characteristics, and biological features of lung cancer and establish novel therapy, as well as prevention and early detection. In this symposium, 6 opinion leaders of lung cancer research field will give lectures regarding 1) latest WHO classification, 2) contribution of surgeon, 3) evolution of radiotherapy, 4) novel molecular target therapy, 5) genetic factors responsible for drug-induced lung disease, and 6) up-to-date of immunotherapy. We look forward to sharing latest information of lung cancer and having hot discussion.

Revised WHO classification of lung cancer

Yuichika Ishikawa (Div. Pathol., The Cancer Institute, Japanese Foundation for Cancer Res)

The contribution of surgeon in development of lung cancer treatment

Shinichi Toyooka (Clinical Genomic Medicine, Okayama University)

Developing treatment strategy for non-small cell lung cancer

Hiromichi Ebi, Hiroshi Kotani, Seiji Yano (Div. Med. Onc, Cancer Res. Ins., Kanazawa University)

Targeted immunotherapy in lung cancer - focusing on therapeutic antibodies

Developing a Nationwide Genomic Screening Network and Clinical Trial for Lung Cancer with Rare Driver Mutations

Koichi Goto (Div. of Thoracic Oncology, Natl. Cancer Ctr. Hosp. East)

A search for the genetic factor responsible for the drug-induced interstitial lung disease caused by gefitinib

Koichi Hagihara (Dept Respir Med, Saitama Med Univ)

Recent progress in pathological diagnostics of cancer

Hirosi Yomokata (Div. of Path., Kobe Univ. Grad. Sch. of Med.)

Recently technical innovation including omics analyses, such as whole genome, methylose, transcriptome and proteome, promotes molecular pathways of human carcinogenosis and identifying biomarkers and drug targets using biopsy and surgically resected materials. Pathologists make meaningful contribution to such data-driven cancer research via providing quality tissue specimens and clinicopathological information. Moreover, pathological aspects are indispensable for data interpretation based on clinicopathological heterogeneity of individual human cancer. Based on such situations, the Japanese Cancer Association and the Japanese Society of Pathology hold a joint symposium in this annual meeting. Both pathologists and researchers focusing on other fields than pathology will introduce the topics about biomarker exploration by omics analyses in tissue specimens, application of novel technologies to pathological diagnosis, and practice of companion diagnostics for molecular-targeted therapy. This symposium will provide an overview of integration of the results of data-driven cancer research into pathological diagnosis for breakthrough of personalized medicine.

Developement of tumor biomarkers based on results from glycoproteomic analysis

格ライコプロテオーム解析によるがんマーカーの開発

池原 慎, 成松 久 (産総研・糖鎖医工学部), 産総研・バイオメテイカル研究部門, 産総研・糖鎖創薬研究

Serum Metabolome Analysis for Discovering Biomarkers of Cancers

血清メタボロミクスを用いたがんバイオマーカー探索

吉田 俊 (神戸大・医, 病因病態解析学, 神戸大・医, 消化器内科学)

Multilayer-omics approach maximizes added value of pathological diagnostics of cancer

病理診断に付加価値を加える：多層のオミクロン解析に基づく病態診断

金井 弥栄 (国立がん研究センター 研究・分子病理)

Tumor imaging using specific uptake of a fluorescent glucose derivative into cells

Katsuazu Yamada (Dept. Physiol., Hirosaki Univ. Grad. Sch. Med.)

蛍光グルコース誘導体の細胞内への特異的取り込みを利用した腫瘍イメージング

山田 勝也 (弘前大学・医, 統合機能生理)

Diagnostics for driver fusion genes

Kengo Takeuchi (Pathology Project for Molecular Targets, Cancer Institute, JFCR)

ドライバー融合遺伝子を同定する病理診断

竹内 賢吾 (かん研究所 分子標的病理プロジェクト)

From IHC to NGS; our experiences at NCCH

Takeshi Kuwata (Dept.Pathol., NCCH)

病理組織標本を用いたバイオマーカー探索

桑田 健 (国立がん研東京)
Development of companion diagnosis

Recent progress in cancer research, especially in the genomic analysis of cancers has been astonishing. The goal of these approaches is centered on its clinical applications; diagnosis, therapeutics and companion diagnosis (CoDx).

The PMDA, as well as FDA, have issued technical guidance for the development of CoDx tests and drugs. From the early stages to the clinical phases of development, investigators in Japan have played an important role in planting the seeds and developing application platforms for novel technologies such as exosome, micro RNA, CTG trapping technology, and deep sequencing.

In this symposium, the top researchers will introduce their seeds and share their strategies for the development. Some of the investigators will introduce the diagnostic applications of novel technologies such as ddPCR and the sequencing for tumor and circulating samples.

The ultimate goal of these seeds is to receive approval as drugs and diagnostic tools. The regulatory aspects are a major focus of this goal and the governing systems will be also discussed in this symposium.

S14-1 Exploration of Molecular Targets and Biomarkers for Gynecologic Cancer through Genomic Technologies

S14-2 Extracellular vesicles as a novel liquid biopsy for cancer

S14-3 Development of nucleic acid medicine that elicits cellular senescence in cancer cells

S14-4 Beyond molecular diagnosis of lung cancer: non-invasive longitudinal monitoring of disease status and treatment efficacy

S14-5 Clinical applications of next generation sequencing on therapeutic decision-making in lung cancer

Masayuki Takeda, Kazuo Sakai, Kazuto Nishio, Kazuhiro Nakagawa (Medical Oncology, Kinki University Faculty of Medicine, 2Genome biology, Kinki University Faculty of Medicine)

S14-6 The practical issues regarding development and clinical use of companion diagnostics (CoDx)

Yoshiaki Tazawa (Roche Diagnostics K.K)
E1057 Development of TOPK-specific inhibitor that induced complete tumor regression in human cancer xenograft models

E1058 Suppression of intestinal polyp formation in Apc mutant mice by the MEK inhibitor Trametinib.

E1059 Resistance to tyrosine kinase inhibitors: Transition from mesenchymal to stemness-like features in glioblastoma.

E1060 A novel anthraquinone BH3 mimetic induces apoptosis in melanoma through direct binding to phosphorylated Mcl-1

E1061 Kinome and ATPome-wide selectivity profiling of ATP-competitive kinase inhibitors

J1043 Identification of and overcoming the crizotinib and ceritinib resistance in ROS1-rearranged lung cancers

J1044 The molecular characters of acquired resistant non-small lung cancer cells to afatinib

J1045 ASP8273, a mutant EGFR selective inhibitor, with inhibitory activity for EGFR activating and T790M resistance mutations

J1046 Identification of the alectinib-resistance mechanism in NSCLC harboring ALK rearrangement

J1047 MUC4 variants in patients with EGFR-TKI-Induced interstitial lung disease
J-1048 Multi-OMICS analysis of lung adenocarcinoma in malignant transition by RNA-Seq
RNA-Seq を用いた肺腺癌悪性化過程のマルチオミックス解析
白木澤 沙衣、飯後 彰彦、祖父 智、横井 左奈、畑樂 康文（慶應義塾大学医学部）

J-1049 Collective intelligence approach to hypoxia responsive genes
Hidemasa Bono (DBCLS, ROIS)
公共データベースからの集合知による低酸素刺激応答遺伝子群の解析
坊嶋 秀雅（国際機構・ライフサイエンス統合データベース）

J-1050 CoLo: a novel algorithm to distinguish significant co-localizations through multiple ChIP-seq data comparison
Ryo Nakaki, Yasuharu Kanki, Takayoshi Umeda, Shuichi Tsutsumi, Hiroyuki Aburatani (Genome Science Dev., RCAST, Univ. of Tokyo)
複数の ChIP-seq データの比較により共に在因子を特定する新規計算アルゴリズムの開発と応用
谷木 龍、神吉 優、梅田 高呂、堤 修一、油谷 浩幸（東大・先端研・ゲノム）

J-1051 A scoring method of gene expression signatures for detecting multiple mechanisms using the Connectivity Map database
Connectivity Map データベースを利用した化合物スクリーニングのアルゴリズム開発
牛嶋 大、富田 師弘、齋藤 さかえ、野田 哲生、松浦 正明（東京大学医学部、がん研・ゲノムセンター、がん研・化療センター、東北大学・東北メディカル・メガバンク機構、がん研・がん研究所、帝京大学・院公衆衛生学）
Room 2

LS-1

Thermo Fisher Scientific Life Sciences Solutions

Life Technologies Japan Ltd.

In vivo diagnostic test development by deep sequencing

Kazuto Nishio, M.D. Ph.D. (Professor and Chairman, Department of Genome Biology, Kinki University Faculty of Medicine)

NGS を用いた Multiplex 診断薬への可能性

西尾和人（近畿大学 医学部 ゲノム生物学教室 教授）

Room 3

LS-2

Bio-Rad Laboratories

バイオ・ラッドラボトリエス株式会社

The latest biomarker approach to accelerate cancer research

Masatoshi SOEJIMA (Life Science Group, Product Support Manager)

Yasutaka ISOGAWA (Life Science Group, Product Support Manager)

がん研究を加速するバイオマーカー最新アプローチ

副島 正年（バイオ・ラッドラボトリエス株式会社プロダクトサポートマネージャー）

五十川 泰史（バイオ・ラッドラボトリエス株式会社プロダクトサポート）

Room 4

LS-3

AS ONE CORPORATION

アシワン株式会社

1. Development of a Single-Tube, Multiplexed Assay for Detecting ALK, ROS1, and RET Fusions
2. Challenge to stratification of treatment for malignant lymphoma using nCounter system -mRNA analysis from FFPE samples–

1. Michael Rhodes Ph.D. (NanoString Technologies Inc.)
2. Kouta Miyawaki M.D. (Department of Medicine and Biosystemic Science Kyushu University Faculty of Medicine)

1. Development of a Single-Tube, Multiplexed Assay for Detecting ALK, ROS1, and RET Fusions
2. nCounter system を用いた悪性リンパ腫治療効果の試み～FFPE 病理検体のmRNA 解析～

1. Michael Rhodes Ph.D. (NanoString Technologies Inc.)
2. 宮脇 恒太（九州大学 医学部 血液腫瘍内科）

Room 5

LS-4

Tomy Digital Biology Co., Ltd.

トミーデジタルバイオロジー株式会社

Integration of next-generation proteomics and mathematical sciences unveils the secret of cancer

Keiichi Nakayama (Professor, Division of Cell Biology, Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University) Chair: Noboru Mizushima (Professor, Department of Biochemistry and Molecular Biology, The University of Tokyo, Graduate School and Faculty of Medicine)

次世代プロテオミクスと数理科学の融合が解き明かすがんの秘密

中川 敬一（九州大学 生体防御医学研究所 ヒトプロテオーム研究センター 主幹教授）

座長：水島 靖（東京大学大学院 医学系研究科 分子生物学分野 教授）

Room 6

LS-5

Chugai Pharmaceutical CO., LTD.

中製薬株式会社

The upfront therapy for ALK-rearranged NSCLC.

Takashi Seto, M.D., Ph.D. (Department of Thoracic Oncology, National Kyushu Cancer Center) Chair: Seiji Yano, M.D., Ph.D. (Division of Medical Oncology, Cancer Research Institute, Kanazawa University)

ALK 奏合遺伝子陽性非小細胞肺癌治療の最前線

座長：矢野 聖二（金沢大学がん進展制御研究所 腫瘍内科 教授）

Room 7

LS-6

Janssen Pharmaceutical K.K.

ヤンセンファーマ株式会社

Updated treatment strategy of CRPC – New androgen deprivation with CYP17 inhibition –

Tsutomu Nishiyama, M.D., Ph.D. (Division of Urology, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences) Chair: Seiichiro Ozono, M.D., Ph.D. (Professor, Department of Urology, Hamamatsu University School of Medicine)

去勢抵抗性前立腺癌における新しい治療戦略～CYP17 阻害による新たな Androgen Deprivation～

座長：大関 誠一郎（済生医科大学 泌尿器科学講座 教授）

Room 14

LS-7

TAIHO PHARMACEUTICAL CO., LTD.

大野製薬工業株式会社

The Drug Discovery in Cancer Stem Cell-targeting Epigenetic Metabolism

Hideshi Ishii, MD, PhD (Specially Appointed Professor, Cancer Profiling Discovery Center of Medical Innovation and Translational Research (CoMIT), Osaka University Graduate School of Medicine) Chair: Mitsuki Yoshida, Ph.D. (Center Director, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research)

創薬標的としての癌幹細胞エピゲノム代謝

石井 秀始（大阪大学大学院 創薬化学研究所 特任教授）

座長：吉田 光昭（公益財団法人 がん研究会がん研究所がん化学療法センター 所長）

Room 16

LS-8

Roche Diagnostics K.K.

ロシュ・ダイアグノシックス株式会社

Roche Sequencing Unit:NmblGene Target Enrichment, Genotyping And the Future of personalized Healthcare

Dr. William LaRochelle (Head of Healthcare & Key Opinion Leader Management)

座長：吉田 光昭（公益財団法人 がん研究会がん研究所がん化学療法センター 所長）
Clinical sequencing toward complete cure of cancer

Sponsored by Princess Takamatsu Cancer Research Fund

Chairpersons: Yusuke Nakamura (Univ. of Chicago)
Elaine Mardis (The Genome Inst., Washington Univ.)

Unlocking the Power of the Genome: Next-Generation Sequencing Will Drive Next Generation Cancer Management
Jay T. Flatley (CEO, Illumina Inc.)

Cancers, a series of diseases that lead to lethal collapse in homeostasis, are caused by an uncontrolled expansion of abnormal cells that can spread body-wide in disorder. Hanahan and Weinberg proposed that cancer cells should share at least six biological principles: self-sufficiency in growth signals, insensitivity to anti-growth signals, evading apoptosis, limitless replicative potentials, sustained angiogenesis, and tissue invasion and metastasis (six hallmarks of cancer). Genomic mutations and epigenomic alterations that have accumulated in cancer cells should represent genetic blueprints that are translated into malfunctioned signaling pathways that give rise to the acquisition of the hallmarks of cancer. Importantly, deregulated signaling pathways that predispose cancer are not mutually-independent but complexly intertwined so that they give rise to a spiral type reaction that accelerates the process for the acquisition of the six hallmarks of cancer. This symposium will consider the nature of the downward spiral for carcinogenesis comprising malfunctioned signal transduction pathways.

S2-1 MCRI1, a novel ERK substrate, mediates ERK-induced gene silencing during epithelial-to-mesenchymal transition
Mutsuhito Takekawa (Div. Cell Sig. Mol. Biol., Inst. of Med. Sci., The Univ. of Tokyo)

S2-2 Chronic inflammation and TGFβ signaling suppression in invasive gastrointestinal cancer development

S2-3 New mechanisms that regulate Wnt/β-catenin signaling and their potential roles in cancer
Tohru Ishii (Div. of Cell Reg. Sys., MIB, Kyushu Univ.)

S2-4 Carcinogenic spiral made between the Helicobacter pylori CagA oncprotein and inflammation

S2-5 Liver diseases caused by perturbation of Nrf2 regulation

S2-6 Innate immune spiral of intestinal epithelial cells by the long-term inflammation
Kiichiro Tsuji1, Shuji Hibiya1, Mamoru Watanabe1,2 (1Dept. Advanced Therapeutics GI, Tokyo Med. & Dent. Univ., 2Dept. of Gastroenterology & Hepatology, Tokyo Med. & Dent. Univ.)
S8

Forefront of epigenetics in cancer research

*Chairpersons: Hiroyuki Aburatani (the Univ. of Tokyo, Res. Ctr. for Advanced Sci. & Tech., Genome Sci. Lab.)
Yutaka Kondo (Dpt. Epigenomics, Nagoya City Univ., Sch. Med. Sci.)

座長：油谷 渕幸（東大・先端研・ゲノムサイエンス）
取締：近藤 豊（名古屋市立大・医・遺伝子制御学）

Recent genomic and epigenomic analyses have revealed that mutations in epigenetic modifiers occur frequently in human cancers and that dysregulation of epigenetic mechanisms is associated closely with tumor formation. These aberrant epigenetic modifications may also affect the tumor behavior, such as plasticity of cancer cells, which may confer aggressiveness to cancers. In addition, recent fascinating studies demonstrated a link between aberrant metabolite profile by mutations of metabolic enzymes and aberrant cancer epigenome. Therefore, elucidation of various epigenetic abnormalities, including DNA methylation, histone modifications, non-coding RNA, and chromatin-remodeling, will reveal novel aspects of cancer biology and lead to a new paradigm of cancer treatment. In this session, speakers will highlight recent discoveries in the various types of epigenetic alterations in cancers, and also extend their findings to clinical applications. These novel interventions may have imminent impact on new cancer therapies.

S8-1 Epigenetic Regulation in Glioma Stem Cell in Response to Environmental Signals

Yutaka Kondo (Dpt. Epigenomics, Nagoya City Univ., Sch. Med. Sci.)

細胞外環境による脳腫瘍幹細胞のエピジェネティック制御

近藤 豊（名古屋市立大・医・遺伝子制御学）

S8-2 Editing independent role of Adenosine DeAminases acting on double stranded RNA in hepatocellular carcinoma

Liuhua Qi1, Tim H.M. Chan1, Leilei Chen1, Daniel G. Tenen1,2 (1CSI of Singapore, 2BIDMC, Harvard Institutes of Medicine, Boston MA)

S8-3 TET1 promotes malignant characteristics by aberrant enhancer hydroxymethylation in hepatocellular carcinoma

Genta Nagae, Hiroyuki Aburatani (Res. Ctr. for Advanced Sci. & Tech., the Univ of Tokyo)

TET1はエンハンサーの異常なヒドロキシメチル化により肝癌の悪性形態を促進する

永江 玄太、油谷 渕幸（東大・先端研・ゲノムサイエンス）

S8-4 IDH mutation and cancer

Yoko Ogawara1, Takuo Katsumoto1, Yutaka Shima1, Tomoyoshi Soga1, Issay Kitabayashi1 (1Div. Hematological Malignancy, Natl. Cancer Ctr. Res. Inst., 2BIDMC, Harvard Institutes of Medicine, Boston MA)

S8-5 Selective gene regulation by histone variants

Yasuyuki Ohkawa (Dept. Med. Initiative, Kyushu Univ., Grad Sch. Med.)

ヒストンバリントンによる遺伝子選択～ヒストンバーコード解析の新たな展開～

大川 恭行（九大・医・先端医療科学部門）

S8-6 Mutations in chromatin remodeling complex genes and cancer

Hiroyuki Aburatani (Genomescience lab., RCAST, Tokyo Univ.)

エピジェノム制御因子の変異とがん

油谷 渕幸（東京大・先端研・ゲノムサイエンス）

IS3

Cancer liquid biopsy

Yuk Ming Dennis Lo (Li Ka Shing Inst. of Health Sci., The Chinese Univ. of Hong Kong)

座長：落合 孝広（国立がん研・研・分子細胞治療）
Yuk Ming Dennis Lo (Li Ka Shing Inst. of Health Sci., The Chinese Univ. of Hong Kong)

High-grade human biospecimens and associated patient clinicopathological information are key factors of a scientific platform that support discovery and identification of a novel molecular biomarkers and development of diagnostic systems. At present, the high costs and false rates in biomarker development represent a significant blockade to medical progress. For further development of technology and tools for precision diagnostics, a novel bio-marker platform with simple, quick, low cost, and noninvasive is required. The recent advancements in next-generation sequencing assays, proteomics and other-omics platforms allow profiling of huge amount of cancer-derivatives in a single assay. In this session, liquid biopsy components such as circulating cell-free DNA, microRNA, extracellular vesicles, and metabolome for developing molecular tests to improve cancer diagnosis and optimize cancer treatment will be discussed.

IS3-1 Genomic and methyliconic sequencing of plasma DNA for cancer detection

Yuk Ming Dennis Lo (The Chinese University of Hong Kong)

IS3-2 Use of DNA methylation as a biomarker for cancer diagnosis

IS3-3 Salivary metabolomics for cancer detections

Masahiro Sugimoto (IAB, Keio Univ)

IS3-4 Exosomes provide a protective and enriched source of miRNA for biomarker diagnostic tests

Lesley Cheng1, Robin A. Sharples1, Benjamin J. Scicluna1,2, Andrew F. Hill1,2 (1Dept. of Biochemistry and Molecular Biology, University of Melbourne, Australia, 2Dept. of Biochemistry and Molecular Biology, Bio21 Institute, Australia)

IS3-5 Systemic analysis of in vivo extracellular vesicles isolated from mouse melanoma

Yae In Yoon1, Eun-Jeong Choi1, Bae Imm Kim1, Dong-Sic Choi1, Yoon-Keun Kim1, Yong Song Gho (Division of Integrative Biosciences and Biotechnology, POSTECH, Division of Life Sciences, POSTECH)

IS3-6 Identification of the bona-fide biomarkers from circulating exosomal microRNA in liver and colorectal cancer patients

Keishi Sugimachi1, Tae Matumura1, Yoshiaki Shindeni1, Tomohiro Iguchi1, Hitodetoshi Iguchi1, Hisae Inuma1, Takahiro Ochiya1, Ken Shirabe1, Yoshihiko Maehara1, Koshi Mimori1 (1Dept. Surg., Kyushu Univ. Beppu Hosp., 2Dept. Surg., Teikyo Univ., Sch. Med., 3Div. Molecular and Cellular Medicine, National Cancer Center Research Institute, 4Dep. Surgery and Science, Grad. Sch. Med. Sci., Kyushu Univ.)
Early and exploratory trials with new agents

Chairpersons: Atsushi Ohtsu (ExploR.Oncol.Res.& Clin. Trial Center, Natl Cancer Center)
Chia-Chi Lin (Dept. of Oncol., Natl. Taiwan Univ. Hosp.)

With an establishment of infrastructure for early and exploratory trials, number of these trials has been increasing in recent years. In some tumors with high prevalence in Asian countries, the activation of these early clinical trials is a key to lead new agent development for late phase studies mainly lead by Asian countries. There have been several obstacles caused by regulatory differences between each country for conducting international early clinical trials. However, with a harmonization of the regulatory guideline, several joint phase I or POC studies have already initiated. In the sites participating these early/exploratory clinical trials, not only high quality clinical trial team but also translational study team are required with a quality control/assurance matched as international criteria. In this session, several speakers who have much experience of early clinical trials will give us useful information for cutting edge new agent development as science-based and mutual understanding for current status and future perspectives of early/exploratory clinical trials in Asia.

New agent trials in head and neck cancer
Brigette Ma (Department of Clinical Oncology, Chinese University of Hong Kong)

A first-in-Asian phase I study of VS-6063, a focal adhesion kinase inhibitor in subjects with advanced solid tumors
Toshio Shimizu¹, Hidemi Aida¹, Chiaki Hashii¹, Joanna Horobin², Mitchell Keegan³, Mahesh Padval³, Anne Poli³, Kazuhiko Nakagawa¹ (¹Department of Medical Oncology, Kinki University Faculty of Medicine, Japan, ²Clinical Research Operations, ³Verastem, Inc.)

日本語: 未発表

Challenges and opportunities in developmental therapeutics for EGFR resistance
Wan-Tack Lin (Division of Medical Oncology, National Cancer Center Singapore)

Chikusetsusaponin IVa methyl ester induces cell cycle arrest and apoptosis by regulation of the Wnt signalling pathway
Kuang-Mi Lee¹, Ji Ho Yun¹, Dong Hwa Lee¹, Young Gun Park¹, Kun Ho Son¹, Cha Won Nho¹, Yeong Shik Kim¹ (¹Natural Products Research Institute, College of Pharmacy, SNU, ²Natural Products Research Center, KIST, ³Dept. of Food Science and Nutrition, ANU)

BPR1J373, a novel multi-targeted tyrosine kinase inhibitor, inhibits the growth of gastrointestinal stromal tumor
Hui-Jen Tsai¹, Ming-Jon Lin¹, Weir-Torn Jiang¹, Chiung-Tong Chen¹, Tsu-An John Hsu¹, Hui-You Lin¹, Li-Tzong Chen¹,²,³,⁵ (¹National Institute of Internal Medicine, National Cheng Kung University Hospital, ²Institute of Molecular Medicine, National Cheng Kung University, ³Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, ⁴Institute of Biotechnology, National Health Research Institutes, ⁵Institute of Internal Medicine, Kaohsiung Medical University Hospital)

Activity in NCC-EPOC
Kohei Shitara (National Cancer Center Hospital East)

Japanese Oral Sessions

Room 6
Sep. 25 (Thu.) 13:30-14:30

J1052 The prognostic significance of vasoohin-1 expression in patients with prostate cancer
Takero Kosaka¹, Yasumasa Miyazaki¹, Shuji Mikami¹, Akira Miyajima¹, Eiji Kikuchi¹, Nobuyuki Tanaka¹, Yasunori Okada¹, Yasufumi Sato¹, Mototsugu Oya¹ (¹Dept. of Urology, Keio University School of Medicine, ²Dept. of Pathology, Keio University School of Medicine, ³Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan.)

前立腺がんにおける新規血管新生関連マーカーの発現の検討
小坂 威雄¹、宮崎 保匡¹、上原 久司²、宮崎 哲³、菊地 栄次²、田中 伸之²、岡田 保典²、佐藤 靖史²、大塚 基樹³（慶應義塾大学 医学部 泌尿器科学教室、慶應義塾大学 医学部 病理学教室、東北大学 加齢医療研究所）

J1053 ABT-263 sensitizes PC3 prostate cancer cells to docetaxel

ABT-263 はヒト前立腺癌 PC3 細胞のドセタキセル感受性を増強する
玉木 宏樹¹, ²、原嶋 奈々江¹、原田 守¹（島根大・医・免疫、³島根大病院・薬）

J1054 Heme oxygenase-1 expression is associated with tumor aggressiveness in bladder cancer: Correlation with smoking
Yasuhide Yamaishi¹, Hideaki Kamiya¹, Yoshio Igarashi¹, Masao Kato¹, ² (¹Dept. Urology, ²Tokushima Univ. Hospt.)

膀胱癌における heme oxygenase-1 の病理学的役割：喫煙との関連
宮田 康好、酒井 英樹（長崎大学医学部 腎泌尿器科学教室）

J1055 Ubiquitin2 is a novel target molecule for progression of human urothelial carcinoma.
Koji Shimada¹, Tomomi Fujii¹, Yoshihiro Tsutsumi¹, Satoshi Anai², Nobumichi Tanaka², Kiyohide Fujimoto², Noboru Konishi² (¹Dept. Pathol., Nara Med. Univ., ²Dept. Urolo., Nara Med. Univ.)

尿路上皮癌における新規癌進展因子 ubiquitin2 の分子病理学的研究
居田 喜文、藤井 稔美、田村 哲雄、生田 敬、石谷 宏之、森本 清雄²、小西 昌（奈良医大・病理病態、³奈良医大・泌尿器科）

J1056 Nucleolar oncoprotein BCRG1 is involved in progression of bladder cancer.
Kei Daizumio¹, Masato Komatsu¹, Tetsuro Yoshimura¹, Hisanori Uehara¹, Tomoya Fukawa¹, Hiro-omi Kanayama¹, Yooyama Katagiri¹ (¹Division of Genome Medicine, University of Tokushima, ²Dept. Mol. Environ. Pathol., Univ. Tokushima Graduate School, ³Dept. Urology, HBS, The Univ.Tokushima Graduate School)

核小体がマンガンパク質 BCRG1 は膀胱癌の進行に関与している
居田 但是¹、小松 正人¹、吉丸 和郎¹、上原 久典¹、田村 俊也²、金尾 田雄¹、片町 隆司¹（広島大学大学院 環境病理学分野、²広島大学大学院 HBS 研究部 泌尿器科）
Role of IFGBP2 in acquired drug resistance to TKIs targeting EGFR, c-Met, and PDGFR in glioblastoma
Masumi Tsuda1, Lei Wang, Mishie Tanino, Taichi Kimura, Hiroshi Nishihara, Shinya Tanaka2 (1Dept. of Cancer Pathol., Hokkaido Univ. Grad. Sch. of Med., 2Dept. of Translational Pathol., Hokkaido Univ. Grad. Sch. of med.)
EGFR, c-Met, and PDGFR特異的阻害薬に対して耐性を獲得した脳腫瘍細胞株IFGBP2の役割
津田真寿美, 王磊, 谷野哲雄, 木村太一, 西原和広, 田中伸哉（北海道大学医学部 医学研究科 腫瘍病理学, 北海道大学医学部 医学研究科 探索病理学）
E-1067 miRNA expression profile as an indicator as heterogeneity of lung cancer
Noriko Motoi, Hiroko Nagano, Yasen Mahmut, Hironori Ninomiya, Yuichi Ishikawa (Division of Pathol, the Cancer Institute, JFCR)
肺芽細胞多様性の指標としてのmiRNA発現様式
元井 篤子，長野 幸子，Yasen Mahmut, 二宮 政浩，石川 雄一 （公財法人研病所）

E-1068 Temporal phosphoproteome dynamics reveal response pathways of ectopic ATP synthase blockade
Chia-Wei Hu, Chia-Lang Hsu, Yu-Chao Wang, Yasushi Ishihama, Wei-Chi Ku, Hsuan-Cheng Huang, Hsuhe-Fen Juan (Institute of Molecular and Cellular Biology, National Taiwan University, Taiwan, Department of Life Science, National Taiwan University, Taiwan, Institute of Biomedical Informatics, National Yang-Ming University, Taiwan, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan, School of Medicine, Fu Jen Catholic University, Taiwan)

E-1069 Ezrin expressing lung adenocarcinoma cells and podoplanin positive fibroblasts form a malignant microenvironment
Shigeki Suzuki, Genichiro Ishii, Rie Matsuwaki, Shinya Neri, Hiroko Nagano, Kimie Nomura, Noriko Motoi (Division of Pathol, the Cancer Institute, JFCR)

E-1070 Association of long noncoding RNA MALAT-1 expression and KRAS mutation in lung adenocarcinoma

E-1071 Evaluation of EGFR and KRAS mutations detection by next-generation sequencing in non-small cell lung cancer
Akihito Kubo, Yasuhiro Koh, Tomoya Kawaguchi, Masakuni Serizawa, Shun-iisa Ito, Hideo Saka, Masahiko Ando, Akihide Matsumura (National Hospital Organization Nagoya Medical Center, Aichi Medical University School of Medicine, Dept. Respir. Med., Nagoya Univ., Sch. Med., Division of Molecular Oncology, Aichi Cancer Center Research Institute)

E-1072 Metabolomic signatures in erlotinib-resistant non-small cell lung cancer cells harboring EGFR activating mutation
Masakuni Serizawa, Masatoshi Kusuha, Yuriko Takagoe, Kenchichi Urakami, Masaru Watanabe, Toshiaki Takahashi, Ken Yamaguchi, Nobuyuki Yamamoto, Yasuhiko Koh (Drug Discovery and Development Division, Shizuoka Cancer Center Research Institute, Region Resources Division, Shizuoka Cancer Center Research Institute, Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Third Department of Internal Medicine, Wakayama Medical University, Division of Thoracic Oncology, Shizuoka Cancer Center, Shizuoka Cancer Center)

E-1073 Usefulness of peripheral blood for monitoring of acquired resistance to EGFR tyrosine kinase inhibitors
Naomi Kobayashi, Naoko Aragane, Tomomi Nakamura, Akemi Sato, Respiratory Comission, Masaburo Sawada, Sitya Kamisu (Division of Hematology, Respiratory Medicine and Oncology, Saga University, Department of Laboratory Medicine, Saga University Hospital)

E-1074 Effect of HDAC inhibition on BIM polymorphism-mediated resistance to new generation EGFR-TKIs in EGFR mutant lung cancer
Akiyoshi Tanimoto, Shinji Takeuchi, Shoko Arai, Koji Fukuda, Kenji Kita, Hiroshi Kotani, Shigeki Nanjo, Hiromichi Ebi, Seiji Yano (Division of Medical Oncology, Cancer Research Institute, Kanazawa University)

E-1075 Potential of miR-221 and miR-222 as therapeutics for non-small cell lung cancer

E-1076 High sensitive detection method for circulating tumor cells in non-small cell lung cancer patients by TelomeScan F35

J-1062 Metabolomic signatures in erlotinib-resistant non-small cell lung cancer cells harboring EGFR activating mutation
Masakuni Serizawa, Masatoshi Kusuha, Yuriko Takagoe, Kenchichi Urakami, Masaru Watanabe, Toshiaki Takahashi, Ken Yamaguchi, Nobuyuki Yamamoto, Yasuhiko Koh (Drug Discovery and Development Division, Shizuoka Cancer Center Research Institute, Region Resources Division, Shizuoka Cancer Center Research Institute, Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Third Department of Internal Medicine, Wakayama Medical University, Division of Thoracic Oncology, Shizuoka Cancer Center, Shizuoka Cancer Center)

J-1063 Usefulness of peripheral blood for monitoring of acquired resistance to EGFR tyrosine kinase inhibitors
Naomi Kobayashi, Naoko Aragane, Tomomi Nakamura, Akemi Sato, Respiratory Comission, Masaburo Sawada, Sitya Kamisu (Division of Hematology, Respiratory Medicine and Oncology, Saga University, Department of Laboratory Medicine, Saga University Hospital)

J-1064 Effect of HDAC inhibition on BIM polymorphism-mediated resistance to new generation EGFR-TKIs in EGFR mutant lung cancer
Akiyoshi Tanimoto, Shinji Takeuchi, Shoko Arai, Koji Fukuda, Kenji Kita, Hiroshi Kotani, Shigeki Nanjo, Hiromichi Ebi, Seiji Yano (Division of Medical Oncology, Cancer Research Institute, Kanazawa University)

J-1065 Potential of miR-221 and miR-222 as therapeutics for non-small cell lung cancer

J-1066 High sensitive detection method for circulating tumor cells in non-small cell lung cancer patients by TelomeScan F35
J-1067 The newly identified TTF-1/p63 double-positive cell is a candidate for cell-of-origin of TRU-type lung adenocarcinoma
Kenji Yamada1,2,3, Yuki Inagawa, Takashi Yugawa, Shin-ichi Ohno, Tomomi Nakahara, Shun-ichi Watanabe, Masayuki Noguchi (Dept. Pathol, Univ. of Tsukuba, Faculty of Med.)

Field Cancerizationによる非小細胞肺癌発症遺伝子の探索

新田 健2,3, 松川 慎朗1, 渡川 恭至1, 大野 竜一1, 中原 知美1, 渡辺 俊一1, 野口 雅之2, 滝野 透2 (1国がん研究センターウイルス発がん研究分野, 2筑波大・院・人間総合科学・診断病理, 3社会福祉法人仁生社 江戸川病院 病理, 4国立がん研究センター中央病院・呼吸器外科)

J-1068 Analysis of molecular alterations in non-small cell lung cancers based on Field cancerization effect.
Yuho Maki, Mototsugu Watanabe, Tomoaki Ohtsuka, Ken Suzawa, Shinsuke Hashida, Hiromasa Yamamoto, Junichi Soh, Hiroaki Asano, Kazunori Tsukuda, Shinichi Toyooka, Shinichiro Miyoshi (Dept. Thoracic surg., Okayama Univ)

Clinical effect of XAGE1 immune response in EGFR mutated and wild-type advanced lung adenocarcinoma
Yoshihiro Ohue1, Koji Kurose1, Hirofumi Matsumoto1, Yu Mizote1, Yumi Nishio1, Midori Isobe1, Minoru Fukuda1, Akiko Uenaka1, Mikio Oka1, Eiichi Nakayama1 (1Department of Respiratory Medicine, Nagasaki University, 2Faculty of Health and Welfare, Nagasaki University of Medical Welfare)

肺臓患者のXAGE1 (XAGE2a) 免疫治療による生存延長とEGFR遺伝子変異の関係

EphA2 receptor inhibition suppresses proliferation of small cell lung cancer (SCLC) cells via cell senescence.
Osamu Morimura, Toshiyuki Minami, Takashi Kijima, Yoshito Takeda, Izumi Nagatomo, Atsushi Kumanogoh (Dept. of Respiratory Med., Allergy & Rheumatic disease, Osaka univ.)

Targeting angiogenesis for small-cell-lung cancer in orthotopic nude mouse model
Takeshi Isobe1, Amir Onn1,2, Ryouzuke Tanino1, Yukari Tsubata1, Roy Herbst1,2 (1Dept. Medical Oncol. & Respir. Med. Shimane Med. Univ., 2M.D. Anderson Cancer Center, Medical Oncology, Yale Univ. School Med.)

Keywords
Japanese Oral Sessions

In room 7

Lung cancer (3)

Chairperson: Masayuki Noguchi (Dept. Pathol, Univ. of Tsukuba, Faculty of Med.)

座長：野口 雅之（筑波大・医・病理）
E1072 Colorectal cancer risk in atomic bomb survivors based on IL6 gene polymorphism and radiation exposure dose
Tomonori Hayashi1, Seishi Kyoizumi1, Yoichiro Kusunoki1, Waka Okabe1, Kei Nakachi1 (Dept. Radiobiol/Mol. Epidemiol., Radiation Effects Res. Found., Dept. Clinical Studies, Radiation Effects Res. Found.)

IL6 gene polymorphism and radiation exposure dose
Tomonori Hayashi1, Seishi Kyoizumi1, Yoichiro Kusunoki1, Waka Okabe1, Kei Nakachi1 (Dept. Radiobiol/Mol. Epidemiol., Radiation Effects Res. Found., Dept. Clinical Studies, Radiation Effects Res. Found.)

The risk prediction for esophageal cancer by drinking, smoking, and the polymorphisms of ALDH2 and ADH1B
Hidemi Ito1,2, Isao Ozeki1, Satoyo Hosono3, Miki Watanabe1, Hideo Tanaka1,2, Keitaro Matsuo1 (Div. of Epidemiology & Prevention, Aichi Cancer Ctr. Res. Inst., Dept. of Epidemiology, Nagoya Univ. Grad. Sch. of Med., Dept. of Preventive Med., Kyushu Univ. Grad. Sch. of Med.)

The risk prediction for esophageal cancer by drinking, smoking, and the polymorphisms of ALDH2 and ADH1B
Hidemi Ito1,2, Isao Ozeki1, Satoyo Hosono3, Miki Watanabe1, Hideo Tanaka1,2, Keitaro Matsuo1 (Div. of Epidemiology & Prevention, Aichi Cancer Ctr. Res. Inst., Dept. of Epidemiology, Nagoya Univ. Grad. Sch. of Med., Dept. of Preventive Med., Kyushu Univ. Grad. Sch. of Med.)

E1075 Impact of the Helicobacter pylori eradication program on medical expenditure reduction in Iga city: preliminary data
Asahi Hishida1, Chikako Mikik1, Junichiro Mukono1, Kenji Waki1, Nobuyuki Hamajima1 (Dept. of Prev. Med., Nagoya Univ. Grad. Sch. Med., Dept. of Surgery, Iga City General Hospital, Dept. of Admin., Aichi Cane Ctr. Res. Inst.)

E1076 Patterns of conditional survival of 23 cancer sites in Japan using population-based cancer registry data

E1077 Colorectal cancer risk in atomic bomb survivors based on IL6 gene polymorphism and radiation exposure dose
Tomonori Hayashi1, Seishi Kyoizumi1, Yoichiro Kusunoki1, Waka Okabe1, Kei Nakachi1 (Dept. Radiobiol/Mol. Epidemiol., Radiation Effects Res. Found., Dept. Clinical Studies, Radiation Effects Res. Found.)

E1078 DNA repair pathway after irradiation with clinically used charged particle beams
Arimugere Gerelehre1, Takaaki Ishikawa1, Eri Manabe1, Lue Sun1, Kazuya Ito1, Kenshi Suzuki1, Juuko Zenko1, Aoumaugame Asaithamby2, Chen David1, Koji Tsuboi1 (1Comprehensive Human Sciences University of Tsukuba, 2School of Medicine and Medical Sciences University of Tsukuba, 3Radiation Oncology Department UTSW Medical Center)

E1079 Activating transcription factor 5 enhances radiosensitivity and malignant phenotypes in lung cancer cells.

E1080 Ubiquitin Ligase Inhibitor is an Effective Combination Therapy with Radiation in Hypoxic Colorectal Cancer Cells

E1081 Patterns of conditional survival of 23 cancer sites in Japan using population-based cancer registry data

E1082 Patterns of conditional survival of 23 cancer sites in Japan using population-based cancer registry data

E1083 Patterns of conditional survival of 23 cancer sites in Japan using population-based cancer registry data
Japanese Oral Sessions

J19-1 Radiation resistance and sensitivity

Chairperson: Takashi Nakano (Dept. Rad. Oncology, Gunma Univ. Graduate Sch. Med.)

座長：中野 隆史（群馬大・院・腫瘍放射線学）

J-1072 GBP1 is one of the key molecules contributing to cancer cell radioresistance

Motoi Fukumoto, Yoshihiko Kuwahara, Usuke Uruishihara, Masatoshi Suzuki, Manabu Fukumoto (Dept. Path., IDAC, Tohoku Univ.)

GBP1 は臨床的放射線耐性細胞の形質に寄与する遺伝子である

福本 基, 桐原 義浩, 澤原 佑介, 鈴木 正敏, 福本 学（東北大・加齢研・病態臓器）

J-1073 Complex DNA damage formation and cellular response after irradiation with therapeutic proton and carbon-ion beams.

治療用陽子線・炭素線照射によるDNA損傷の複雑性と細胞応答

石川 理生, エリュンゲル・ゲレルチューン, 伊東 一也, 鈴木 慎之, 真鍋 結梨, 澤村薫樹, 藤本 謙大, 矢野誠大, 院・人間総合科学,³筑波大・陽子線医学利用研究センター,⁴テキサス大・放射線腫瘍・分子放射線生物

J-1074 CD133-positive cells emerging in glioblastoma spheroids show resistance to radiation and anti-cancer agent

神経膠芽細胞シェロイドの低酸素領域に出現するCD133陽性細胞は放射線/抗がん剤抵抗性を示す

大西 健¹, 谷 勝明², 坂東 真一¹, 佐野 修¹, 藤井 義大², 竹田 実夫³ (¹茨城県立医療大・保健医療・生物, ²茨城県立医療大・院・放射線技術科学専攻, ³茨城県立医療大・保健医療・放射線技術科学, ⁴奈良医大・医・第一解剖)

J-1075 Rad51 inhibitor, B02, is a potential sensitizer for heat treatment of human cancer cells

Akihisa Takahashi¹, Yuuki Yoshida¹, Eiichiro Mori¹ (¹ASRLD Unit, Gunma University, ²GHMC, Gunma University, ³Dept. Radiat. Oncol., Nara Med. Univ.)

Rad51 防制剤B02による温熱増感の可能性の検討

高橋 昭久¹, 吉田 由香里², 森 英一朗³ (¹群大・先端科学研究ユニット, ²群大・重粒子線医学センター, ³奈良医大・腫瘍)

J-1076 X-ray induced DNA double strand breaks are repaired more accurately in radioresistant cells than their parental cells

Yoshihiko Kuwahara, Ryota Washio, Motoi Fukumoto, Usuke Uruishihara, Masatoshi Suzuki, Manabu Fukumoto (Dept. Path., IDAC, Tohoku Univ.)

臨床的放射線耐性細胞に生じたDNA損傷は親株に比べて正確に修復される

福本 基, 鶴尾 俊太, 福本 基, 澤原 佑介, 鈴木 正敏, 福本 学（東北大・加齢研・病態臓器）
J-1077 miR-124 regulates cancer energy metabolism through the miR-124 / PTBP1 / PKM2 feedback cascade.

J-1078 Characterization of tumor suppressor microRNAs silenced by hypermethylation in hepatocellular carcinoma

Chairperson: Satoshi Inoue (Dept. Anti-Aging Med., Univ. of Tokyo)

E-1082 Co-overexpression of mir-16 and mir-17 sensitized paclitaxel resistant lung cancer cells to paclitaxel

Gopal Chakrabarti ('Department of Biotechnology, University of Calcutta, Kolkata, India)

E-1083 Decreased expression of miR-506 induced EMT and poor prognosis in gastric cancer patients

Shotaro Sakimura, Junji Kurasahi, Keishi Sugimachi, Masami Ueda, Hidenari Hirata, Yuki Takano, Ryutaro Uchi, Yoshiaki Shinzen, Tomohiro Iguchi, Hitotoshi Eguchi, Sumio Haka, Koshi Mimori ('Department of Surgery, Kyushu University Beppu Hospital, 'Department of Anesthesiology & Critical Care Medicine, Kyushu University)

E-1084 MicroRNA-566 activates EGFR pathway and sensitizes glioma cells to nimotuzumab

Lei Han, kalilang zheng, juye chen, zhendong shi, peiyu pu, tao jiang, min li, chunsheung kang ('Laboratory of Neuro-Oncology,Tianjin Medical University General Hospital,Tianjin, China, 'University of Texas Medical School, Houston, TX, USA, 'Beijing Tiantan Hospital, Capital Medical University, Beijing, China)

E-1085 The impact of miRNA-based molecular diagnostics and treatment of NRF2-stabilized tumors

Chairperson: Satoshi Inoue (Dept. Anti-Aging Med., Univ. of Tokyo)

E-1086 MicroRNA-29b is a novel potential prognostic marker and inhibits cell proliferation in colorectal cancer

Inoue Jun, Hirofumi Yamamoto, Mamoru Uemura, Junichi Nishimura, Taishi Hata, Ichiro Takemasa, Masatake Ikeda, Kohlei Murata, Tsunekazu Mizushima, Yuichiro Doki, Kohei Taniguchi, Shotaro Sakimura, Tomohiro Iguchi, Hitotoshi Eguchi, Sumio Haka, Koshi Mimori ('Department of Surgery, Kyushu University Beppu Hospital, 'Department of Anesthesiology & Critical Care Medicine, Kyushu University)

E-1087 miR-27b controls c-Src-induced tumor progression by targeting Paxillin

Chairperson: Koshi Mimori (Kyushu Univ. Beppu Hosp.Surg)

E-1088 miRNA-mediated gene expression

Chairperson: Satoshi Inoue (Dept. Anti-Aging Med., Univ. of Tokyo)

J-1080 miR-27b controls c-Src-induced tumor progression by targeting Paxillin

Chairperson: Satoshi Inoue (Dept. Anti-Aging Med., Univ. of Tokyo)

J-1081 Analysis on EMt using Tetracycline-inducible microRNA inhibitory vectors against miR-200c.

Takeshi Hararauchi, Masayuki Kondo, Hideo Iba ('Host-Parasite Interaction, Int. Med. Sci. Univ., Tokyo, Japan)

Tetracycline応答型miRNA阻害デオ「TuD RNA」発現ベクターによるEMTの解析

原口 健, 近藤 正幸, 伊庭 英夫（東大・医科, 宿主寄生体）
E-1087 Comparative expression profiling of miRNA between Pancreatic cancer and stroma cells in clinical samples

Shinichiro Hasegawa¹, Hiroaki Nagano¹, Masamitsu Konno¹, Koichi Kawamoto¹, Naehiro Nishida¹, Jun Koseki¹, Naoki Hama¹, Hiroshi Wada¹, Hitoshi Eguchi¹, Yuichiro Doki¹, Masaki Mori¹, Hideshi Ishii¹

¹Department of Surgery, Osaka University, ¹Department of Frontier Science for Cancer and Chemotherapy, ¹Department of Cancer Profiling Discovery, Osaka University

Abstract

E-1090 Identification of miRNAs functionally associated with transcriptional activity of c-myc in lung cancer

Meichee Tai¹, Taisuke Kajino¹, Yukako Shimada¹, Chinatsu Arima¹, Masahiro Nakatomi¹, Motoishi Suzuki¹, Hiroyuki Miyoshi¹, Kiyoshi Yanagisawa¹, Takashi Takahashi¹

Abstract

E-1091 Robust gene regulatory networks that support anchorage-independent growth of human epithelial tumor cell lines

Hideo Iba², Kazuoshi Kobayashi, Kouhei Sakurai, Hiroaki Hiramatsu, Takeshi Haraguchi

Abstract

Session Information

Room: Room 9

Sep. 25 (Thu.) 15:30-16:30

E5-3 miRNA profiling and gene expression networks

座長：下野 洋平（神戸大院・医・分子細胞生物学）
Japanese Oral Sessions

J-1082 The internalization of RANK is crucial for differentiation of osteoclast involved in bone metastasis
Yuu Toguchida, Jun-ichiro Inoue (The Inst. of Med. Sci., The Univ. of Tokyo)

J-1083 Interaction of Pragmin, a H. pylori CagA-like mammalian EPIYA motif-containing protein, with the C-terminal Src kinase
Yoshie Senda, Masanori Hatakeyama (Dept. of Microbiology, Grad. Sch. of Med., Univ. of Tokyo)

J-1084 Model-based analysis of regulation of Rho activation reveals a positive function of RhoGDI

J-1085 Ligand-Induced Feedback Phosphorylation of Unliganded EGFR via MAPK Pathways Modulates Receptor Signaling

J-1086 TIMP family; TGF-β negative regulator

English Oral Sessions

E-1092 Proteome-wide analysis of circulating extracellular vesicles for cancer early detection

E-1093 ExoScreen as a novel ultra-sensitive liquid biopsy of circulating extracellular vesicles

E-1094 Detecting circulating tumour DNA in plasma samples from a clinical/surgical cohort across multiple tumour streams
Darryl L. Irwin (Sequenom Bioscience, Asia Pacific)

E-1095 Characterization of LASEP3 as a serum diagnostic and prognostic biomarker and therapeutic target for lung cancer

E-1096 Origin of Raised Serum TFF3 Levels in Gastric Cancer in Animal Models and its Relation to Immune Status

88
J1087 Aberrant promoter methylation of PPP1-X and EFH-X in plasma of colorectal cancer patients

J1088 Serum Mac-2bP levels as a novel diagnostic biomarker for prediction of disease severity and nonalcoholic steatohepatitis

J1089 Investigation of novel pancreatic cancer screening marker based on the plasma free amino acid profile.

J1090 Analysis of volatile organic compounds biomarkers for lung cancer in exhaled breath

Hida toyoka, Toshio inagawa, Woosuck shin, Yuichi sakumura, Kazuo sato, yoshitsugu horio, jangchul park (dept. thoracic oncolo., aichi cancer ctr. hosp., advanced manufacturing research institute, aist, information science and technology, aichi prefe., mechanical engineering, aichi institute of technology)

J1091 Significance of Plasma MALAT1 for the Patients with Hepatocellular Carcinoma

Hirotaka Konishi, Daisuke Ichikawa, Yusuke Yamamoto, Tomohiro Arita, Katsutoshi syoda, Hidekazu hiramoto, junichi hamada, yuji fujita, suhei komatsu, atsushi shiozaki, egio otsuji (div. digestive surg. dept. surg., kyoto pref. univ. med.)

J1092 Significance of Plasma MALAT1 for the Patients with Hepatocellular Carcinoma
Functional molecules in cancer stem cell

Chairperson: Tsutomu Chiba (Dept. Gastroenterol. Hepatol., Graduate Sch. Med., Kyoto Univ.)

座長: 千葉 勐（京都大・医・消化器内科）

E-1097 Widespread roles of NADPH oxidase-produced ROS for the maintenance of human cancer stem cells

Chairperson: Tsutomu Chiba (Dept. Gastroenterol. Hepatol., Graduate Sch. Med., Kyoto Univ.)

座長: 千葉 勐（京都大・医・消化器内科）

E-1098 CD146 is a novel marker of highly tumorigenic populations and a therapeutic target in malignant rhodoid tumors

Chairperson: Tsutomu Chiba (Dept. Gastroenterol. Hepatol., Graduate Sch. Med., Kyoto Univ.)

座長: 千葉 勐（京都大・医・消化器内科）

E-1099 CD271 plays critical roles in invading cancer cells in head and neck cancer

Chairperson: Tsutomu Chiba (Dept. Gastroenterol. Hepatol., Graduate Sch. Med., Kyoto Univ.)

座長: 千葉 勐（京都大・医・消化器内科）

J11-3 Cancer stem cell (1)

Chairperson: Osamu Nagano (Div. of Gene Reg, IAMR, Keio Univ. Sch. of Med.)

座長: 永野 修（慶應大 医 先端研 伝遺子制御）

J1092 A switching of CD44 isoforms contributes to the acquisition of cancer stem cell properties in head and neck cancer

Chairperson: Tsutomu Chiba (Dept. Gastroenterol. Hepatol., Graduate Sch. Med., Kyoto Univ.)

座長: 千葉 勐（京都大・医・消化器内科）

Japanese Oral Sessions

Room 11

E11-2 Functional molecules in cancer stem cell

J11-3 Cancer stem cell (1)

E-1097 Widespread roles of NADPH oxidase-produced ROS for the maintenance of human cancer stem cells

E-1098 CD146 is a novel marker of highly tumorigenic populations and a therapeutic target in malignant rhodoid tumors

E-1099 CD271 plays critical roles in invading cancer cells in head and neck cancer

J1092 A switching of CD44 isoforms contributes to the acquisition of cancer stem cell properties in head and neck cancer

E-1100 The machinery in which prostate cancer cells acquire dormancy depending on epidermal growth factor expression level

E-1101 Microarray analysis of Dclk1-positive tumor cells in ApoE-/- mouse polyps

J1095 Functional role of GATA3- RuvBL2 complex in cancer stem cell

J1096 ZEB1 associates with DNTM1 and maintains DNA methylation of the E-cadherin promoter in breast cancer cells

E-1100 The machinery in which prostate cancer cells acquire dormancy depending on epidermal growth factor expression level

E-1101 Microarray analysis of Dclk1-positive tumor cells in ApoE-/- mouse polyps

J1095 Functional role of GATA3- RuvBL2 complex in cancer stem cell

J1096 ZEB1 associates with DNTM1 and maintains DNA methylation of the E-cadherin promoter in breast cancer cells
J-1097 Application of iPSC technology to demonstrate the concept of cell-specific carcinogenesis
Kyoichi Hashimoto, Yasuhiro Yamada, Yoshinori Sakai (Center for iPS Cell Research and Application, Kyoto University, Department of Surgery, Kyoto University)

iPS細胞作製技術を用いた細胞種特異性発癌の検証

Chairperson: Yasuhiro Yamada (GIRA, Kyoto University)

J-1098 Generation of Induced Colon Cancer Stem Cells by introducing OCT3/4, SOX2 and KLF4
Nobu Oshima, Yasuhiro Yamada, Takashi Aoi (Department of Gastrointestinal Surgery, Kyoto University, Center for iPS Cell Research and Application, Kyoto University)

オクトメント、ソックス2とKLF4を導入した人工大腸腺幹細胞の作製

Chairperson: Jun Yamada (Rosenau, Komix, Shiga University of Medical Science)

J-1099 Discovery of actin cytoskeleton dynamics-regulated adipocyte differentiation and its application to cancer therapy

アクチン細胞骨格動態による脂肪分化を誘導するメディナームの解明とがん治療への応用

J-1100 Pdx1+ cells behave as pancreatic cancer stem cells with high tumorigenicity and metastatic potential
Ryo Okuda, Keisuke Sekine, Daisuke Hisamatsu, Lue Sun, Kaori Hamanaka, Hideki Taniguchi (Department of Regenerative Medicine, Yokohama City University, Proton Medical Research Center, University of Tsukuba)

Pdx1+細胞は高悪性度の膵臓癌幹細胞である可能性

J-1101 Tumor sphere specific expression of transcription factor CDX1 regulates stem cell-related genes in neuroblastoma

神経芽細胞スペア特異的に発現する転写因子CDX1は細胞の幹細胞性を制御する

Chairperson: Jun Yamada (Rosenau, Komix, Shiga University of Medical Science)
Molecular mechanism of antitumor immunity

Chairperson: Hideaki Tahara (Inst. of Med. Sci., The Univ. of Tokyo)
座長: 田原 秀晃（東大理科学専門医療研究センター）

E-1102 A new mode of CTL induction secondary to antigen-processing defects in the endoplasmic reticulum
Takayuki Kanaseki, Yosuke Shionoya, Kristin Lind, Nilabha Shastri, Noriyuki Sato (Dept. of Pathology, Sapporo Medical University, Division of Immunology and Pathogenesis, Univ. of California, Berkeley)

MHC クラス I 小胞体プロセッシング異常と新しいCTL 応答
金蘭 喜幸, 塩野谷 洋輔, 久野永林, Nilabha Shastri, 佐藤 昇志（札幌医大・医・第一病理, Univ. of California, Berkeley）

E-1103 Identification of co-inhibitory receptor expression on T cells from gastric cancer patients
Yunhui Zeng, Fuliang Chu, Songbing He, Yu Jing, Fengtiao You, Sisi Ye, Yinli Li, Hui Song, Jintie Tang, Huiming Meng, Ganghui An, Xinding Zhang, Lin Yang (The Cytus Tang Hematology Center, Soochow University, Xi’an Jiaotong University Suzhou Academy, Suzhou, Suzhou Cancer Immunotherapy and Diagnosis Engineering Center, Suzhou, Dept. of General Surgery, First Affiliated Hospital of Soochow University, Dept. of Hematology, the General Hospital of the PLA)

E-1104 the Homeostasis between CD8+ T cells and Treg cells in Follicular Lymphoma Microenvironment
Xiao Liu, Girish Venkataraman, Tao Sun, Jiaying Lin, Sonali Smith, Justin P. Kline, Yusuke Nakamura (Section of Hematology/Oncology, Department of Medicine, the University of Chicago, Department of Pathology, the University of Chicago, Committee on Clinical Pharmacology and Pharmacogenomics, the University of Chicago, Department of Surgery, the University of Chicago, Center for Personalized Therapeutics, The University of Chicago)

E-1105 IFN-γ-secreted from stromal TILs regulates PD-L1 expression on cancer cells in ovarian cancer microenvironment
Kaoru Abiko, Noriomi Matsumura, Junzo Hamanishi, Naoki Horikawa, Ryusuke Murakami, Tsukasa Baba, Ken Yamaguchi, Ichiro Konishi, Masaki Mandai (Dept. OBGYN, Kyoto Univ. Sch. Med., Dept. OBGYN, Kinki Univ. Sch. Med.)

E-1106 Development of chimeric antigen receptor immunotherapy targeting intracellular WT1 gene product
Yasushi Akahori, Motohiro Yoneyama, Hiroaki Ikeda, Yoshihiro Miyahara, Yuki Orito, Yasunori Amanishi, Sachiko Okamoto, Junichi Mineno, Kazuto Takesako, Hiroshi Shiku (Dept. of Immunogene Therapy, Mie Univ. Sch. of Med., Takara Bio, Co. Ltd.)

WT1 ベクテリドHLA-A24 複合体を認識するトヒ抗体の選択とそれを利用したCAR 治療法の開発
赤嶺 泰, 米山 元裕, 池田 聡明, 宮原 優裕, 藤原 匡之, 天石 慎典, 両田 勝彦, 野村 剛一, 竹達 一任, 珠塚 一洋（三重大・医・遺伝子・免疫細胞治療学, タカラバイオ株式会社）

Japanese Oral Sessions

J1-102 Efficiency of SIRPa targeting therapy for exhibiting anti-cancer activity in a murine solid tumor engrafted model
Tomoyuki Abe, Yuka Tanaka, Jinlian Piao, Hiroaki Tashiro, Takashi Matozaki, Hideki Ohdan (Department of Gastroenterological and Transplantation Surgery, Hiroshima University Hospital, Department of Biochemistry and Molecular Biology, Kobe University)

J1-103 Regulatory T cells render tumor-antigen specific CD8+ T cells anergic
Daisuke Sugiyama, Yuka Maeda, Takuro Saito, Megumi Nishihara, Danbee Ha, Hiroyoshi Nishikawa, Shimon Sakaguchi (WPI, IFReC, Experimental Immunology, Osaka Univ., Dept. Dermatology, Grad. Med., Osaka Univ.)

J1-104 Cytotoxic CD4+ cells play a crucial role in cyclophosphamide-mediated cytotoxicity without antigen priming
Tatsushi Naito, Tomohisa Baba, Yasunari Nakamoto, Naofumi Mukaida (2nd Dept. Int. Med., Univ. of Fukui, Cancer Res. Inst. of Kanazawa Univ.)

J1-105 NK cell IFN-γ is a primary effector pathway for controlling tumor growth
Keisuke Ogura, Marimo Sato-Matsushita, Hideaki Tahara, Ikumo Saiki, Yoshihiro Hayakawa (Dept. of Biosci., Inst. of Natural Med., Univ. of Toyama, The Inst. of Med. Sci., the Univ. of Tokyo)

J1-106 Identification of an epithelioid sarcoma antigen SMAGP by antibody phage display library

類上皮肉腫抗SMAGPの同定
塚原 雅英, 池田 慎人, 村田 喜秀, 芝山 雄二, 鳥越 俊彦, 佐藤 昇志（札幌医大・医・病理, 札幌医大・医・整形）
Anticancer T cell response and immune technology

Chairperson: Tetsuya Nakatsura (Div. Cancer Immunother., National Cancer Center)

座長：中野 哲也（国立がん研究センター・免疫療法開発分野）

J1107 Single cell analysis of TCR repertoire of CD4+ T cells in PBMC of a melanoma patient and healthy volunteers.

Hiroyuki Kishi1, Eiji Kubayashi1, Daisuke Sugiyama1, Hiroshi Fujiwara1,2, Tetsuya Nakamura1,2,3, Hiroaki Ikeda1,2, Masaki Eiji Kobayashi1, Daisuke Sugiyama2, Hiroyoshi Nishikawa1, Shimoon Sakaguchi1, Atsushi Muraguchi1 (Depts. Immunol, Grad. Sch. Med. & Pharm., Sci., Univ. Toyama, Exp. Immunol., WPI, iFReC, Osaka Univ.)

メラノーマ患者および健康人PBMC中のCD4+T細胞の単一細胞レベルでのレパートリー解析

岸 哲幸1, 小林 栄治2, 杉山 大介2, 西川 博嘉3, 坂口 志文3, 村口 眞2 (富山大・免疫・免疫療法開発)、

J1108 Induction of tumor-reactive T helper responses by a posttranslational modified epitope from tumor protein p53

抗腫瘍効果を有するアセチル化p53特異的T細胞の誘導およびヒストン脱アセチル化酵素阻害剤によるアジュバント効果の検討

石橋 佳1,2, 熊井 琉美3,4, 及川 賢輔3, 小林 博也1 (旭川医大・病理学講座)、

J1109 Identification of a promiscuous IMP-3-derived long peptide that can induce both Th cells and CTLs

Masatoshi Hirayama1,2,3, Yusuke Tomita1,4, Akira Yuno1,4, Hirotake Tsukamoto1, Satoru Senju1,4, Akihiro Kume1,4, Kei Ishibashi1,4, Takuya Tsunoda1, Yusuke Nakamura1, Masanori Shinohara2,3, Yasuharu Nishimura1 (1Dept. Immunogenetics., Kumamoto Univ., Sch. Med., 2Dept. Oral and Maxillofacial Surgery., Kumamoto Univ., Sch. Med., 3Dept. Respiratory Medicine., Kumamoto Univ., Sch. Med., 4Dept. Clinical Pharmaceutical Sciences., Kumamoto Univ., Sch. Pharmacy, OncTherapy Science Incorporation, Department of Medicine, University of Chicago)

癌細胞型抗原IMP-3由来のCTLとTh細胞の誘導活性を併せ持つ癌抗原ペプチドの同定

平山 毅敏1,2,3, 冨田 雄介1,2,4, 湯野 冠1,4, 塚本 博丈1,4, 千田 聡1,4, もはま まどあぶ1,4, さえむ1,4, 吉武 義泰1,4, 須田 哲悟1,4, 塚野 博史1,4, 角田 卓也1,4, 中村 拓輔1,4, 篠原 正行1,4, 西村 泰治1 (熊本大・免疫・免疫療法学分野)、

J1110 Generation of T-cells expressing a CD19-specific CAR by the Tol2 transposon system.

Tomomori Tsukahara1,2, Ken Ohmine3, Ryouko Uchibori1,2, Massashi Urabe1,2, Hiroaki Mizukami1,2, Akihiro Kume1,2,1, Takayuki Nishikawa1,2, Ken Ohmine3, Akihiro Kume1,2, Kei Ishibashi1,2 (1Dept. Immunol-Gene & Cell ther (Takara), 3Div. of Hematol, Dept. of Med, 4Exp. Immunol., WPI, iFReC, Osaka Univ.)

Tol2トランスポゾンシステムによるCD19特異的CAR発現T細胞の作製

東村 昭司1,2, 大塚 雅弘3, 内田 亮介1,2, 佐藤 医司1, 水上 浩明1, 久米 譲1, 中村 正行1, 小澤 正2 (自治医大・分子病態治療研究

J1111 High-quality TCR-gene modified T cells using siTCR lentiviral vector combined with anti-CD3/CH-296 stimulation.

Sachiko Okamoto1, Hiroaki Ikeda1, Hiroshi Fujiwara1, Masaki Yasukawa1, Hiroshi Shiku1, Junichi Mineno1 (CDM Center, Takara Bio Inc., Dept. of Immuno-Gene Therapy, Mie Univ., Grad. Sch. Med., Dept. of Bioreg., Ehime Univ. Grad. Sch. med.)

抗CD3抗体/CH-296刺激法を用いたsiTCRレントウィルスベクターによる高品質TCR遺伝子改変T細胞の作製

西村 筑1 (東京医科歯科大学)、

INDEX

Japanese Oral Sessions

Room 12

Sep. 25 (Thu.) 15:30-16:30

J1107 Anticancer T cell response and immune technology

Chairperson: Tetsuya Nakatsura (Div. Cancer Immunother., National Cancer Center)

座長：中野 哲也（国立がん研究センター・免疫療法開発分野）

J1107 Single cell analysis of TCR repertoire of CD4+ T cells in PBMC of a melanoma patient and healthy volunteers.

Hiroyuki Kishi1, Eiji Kubayashi1, Daisuke Sugiyama1, Hiroshi Fujiwara1,2, Tetsuya Nakamura1,2,3, Hiroaki Ikeda1,2, Masaki Eiji Kobayashi1, Daisuke Sugiyama2, Hiroyoshi Nishikawa1, Shimoon Sakaguchi1, Atsushi Muraguchi1 (Depts. Immunol, Grad. Sch. Med. & Pharm., Sci., Univ. Toyama, Exp. Immunol., WPI, iFReC, Osaka Univ.)

メラノーマ患者および健康人PBMC中のCD4+T細胞の単一細胞レベルでのレパートリー解析

岸 哲幸1, 小林 栄治2, 杉山 大介2, 西川 博嘉3, 坂口 志文3, 村口 眞2 (富山大・免疫・免疫療法開発)、
Core Symposia

Room 13 Sep. 25 (Thu.) 13:30-16:00

CS2 Autophagy and organelle homeostasis in cancer

Masaaki Komatsu (Dept. Biochem., Niigata Univ., Sch. Med.)

座長: 水島 昇（東大・院医・分子生物学）
小松 雅明（新潟大・医・新生化）

Autophagy is an intracellular degradation system. In contrast to the ubiquitin-proteasome system, autophagy can degrade not only proteins but also any cytoplasmic components including organelles in either non-selective or selective manner. Autophagy is important for intracellular quality control and adaptive responses to environmental changes such as starvation, and therefore, autophagy is involved in normal physiological processes such as development and aging as well as in the pathophysiology of human diseases such as cancer, infection, inflammation, and neurodegenerative diseases.

Although the relationship between autophagy and cancer has been suggested for a long time, studies using autophagy-modified mouse models and studies at the molecular level have been conducted only for several years. Evidences have shown that autophagy has two different aspects: tumor suppression and tumor promotion. As autophagy has various cancer-related roles such metabolic regulation, control of the Nrf2 pathway, and mitochondrial quality control, the effect of autophagy on cancer may be context-dependent. Furthermore, clinical trials of lysosome inhibitors (e.g. hydroxychloroquine) against different types of cancers are now ongoing in multiple institutes in the U.S. In this symposium, we will discuss these issues in the cancer-autophagy field.

CS2-1 Physiological functions and molecular mechanisms of autophagy

オートファジーの生理機能と分子機構
水島 昇（東大・院医・分子生物学）

CS2-2 Persistent activation of Nrf2 through autophagy-specific substrate p62/Sqstm1 in hepatocellular carcinomas
Masaaki Komatsu (Dept. Biochem., Niigata Univ., Sch. Med.)

オートファジー選択的基質p62/Sqstm1による恒常的Nrf2活性化と腫瘍増殖
小松 雅明（新潟大・医・新生化）

CS2-3 Autophagy in cell death and cancer
Kevin M. Ryan (Cancer Research UK Beatson Institute)

CS2-4 Analysis of roles of autophagy in pancreatic cancer development using mouse models

マウスマウスを用いた悪癌発生進展におけるオートファジーの役割の検討
池上 恒雄（東大・医科科・臨床ゲノム腫瘍学分野）

CS2-5 Miel-regulated mitochondrial quality control and its alteration in cancer

ミエアによって制御されるミトコンドリア品質制御とその変化について
喜多村 憲章、中村 康之、荒川 博文（国立がん研究センタ・研・腫瘍生物）

Symposia on Specific Tumors

Room 14 Sep. 25 (Thu.) 13:30-16:00

ST6 New insights on breast cancer: from basic science to clinical application

Chairpersons: Seigo Nakamura (Showa Univ. Sch. of Med.)

座長: 中村 清明（昭和大・医・乳腺外科）
三木 義男（東京医科歯科大学・難治研・分子遺伝）

The prevalence of breast cancer in the Japanese woman has been exponentially increasing and the upward trend is predicted to further continue. Therefore, the premeditated promotion of cancer control program is an important issue. The treatment system corresponding to the biology-based subtype is now recommended rather than the treatment with conventional TNM classification. According to the large-scale cancer genome study by the Cancer Genome Atlas (TCGA) research network in 2012 and "the Pan-Cancer Analysis" in October 2013, although gene alteration of breast cancer is quite diverse, the subtype specific gene mutations were also clarified. With a precise diagnosis based on such genetic diversity and gene alterations, the possibility of personalized molecular target therapy is highly anticipated in breast cancer.

From this perspective, in this session, 6 speakers will present the latest information and argue about the prediction of treatment effect by the genome information, development of circulating tumor cell research to cancer therapy, study of novel target molecule candidates, search for new partner molecules of synthetic lethality, control of the resistance to hormone therapy and clinical application of the breast cancer stem cell research.

ST6-1 Predictive and prognostic biomarkers by gene expression profiles in the field of breast cancer research
Kenji Tamura (Dept. of Breast and Med. Oncol., National Cancer Center Hospital)

遺伝子表現プロファイルに基づいた乳がんの治療予測
田村 哲治（国立がん研究センタ・乳・腫瘍内科学）

ST6-2 Circulating epithelial and endothelial cells in breast cancer patients- Its implications in cancer treatment
Takayuki Ueno1, Sunao Tanaka1, Noriyoshi Fujisawa2, Shigenori Imoto1, Masakazu Toi1 (1 Department of Breast Surgery, Kyorin University Hospital, 2 Department of Breast Surgery, Kyoto University Hospital)

乳がん患者における循環血液中腫瘍細胞、血管内皮細胞－癌治療における展開
上野 萌之1、田中 直之2、藤沢 恵1、井本 滋1、戸井 雅和2（1杏林大学医学部付属病院・乳・腫瘍内科学、2京都市大学医学部附属病院・乳・腫瘍内科学）

ST6-3 Targeting activation of endoplasmic reticulum stress response as a therapeutic strategy for breast cancer

かんがん特異的ストレス応答細胞の活性化応答を標的とした新規薬剤開発
片桐 隆（徳島大・疾患ブロテオゲノム・ゲノム制御）

ST6-4 Approach to the therapy development for BRCA-deficient cancers by the elucidation of the functional role of BRCA2

BRCA2新規機能解明に基づく診断・治療法の開発
中西 啓1、三木 義男2（1東京医科歯科大・難治研・分子遺伝、2癌研・癌・遺伝学診断）

ST6-5 Mechanisms of hormonal therapy resistance and its overcoming in breast cancer

ホルモン治療耐性のメカニズムとその克服に向けて
林 隆一（東北大学・院医・分子機能）

ST6-6 Growth factor controls breast cancer stem cells and their niche

増殖因子による乳がん幹細胞とニッチの制御
後藤 典金（金沢大学・がん進展制御研究所・分子病態）
Symposium

Room 15

Sep. 25 (Thu.) 13:30-16:00

New insights on leukemogenesis of ATL and development of therapy

ABSTRACT

Authors

Yasunobu Nagata, Akira Kitanaka, and Aiko Sato (Kyu. Univ. of Miyazaki)

Keywords

ATL, leukemogenesis, HTLV-1, CD4+ T cells

Human T-cell leukemia virus type I (HTLV-1) induces adult T-cell leukemia after a long latent period. Although HTLV-1 can infect a variety of types of cells, the provirus is detected mainly in CD4+ T cells, indicating that this virus promotes proliferation of CD4+ T cells after infection. Since HTLV-1 infects only by cell-to-cell transmission, this effect to increase CD4+ T cells is the strategy of this virus to survive in vivo. In this symposium, the mechanisms how HTLV-1 induces ATL are presented by studies of viral genes (Dr. Matsuoka) and by using an animal model (Dr. Fujisawa). Thereafter, three speakers (Dr. Morishita, Dr. Kataoka and Dr. Watanabe) will present recent studies how genetic and epigenetic changes of the genome modulate cell functions and eventually induce ATL. Immune responses of the host are also implicated in onset and progression of ATL. Dendritic cells pulsed with Tax peptides might be useful for treatment of ATL patients (Dr. Suehiro). HTLV-1 was identified as a causative agent of ATL over 30 years ago. Recent research on pathogenesis of HTLV-1 and genomic alterations of the host cells leads to improved treatment of this intractable disease.

Leukemogenic mechanism by HTLV-1

Authors

Masao Matsuoka (Inst. for Virus Res., Kyoto Univ.)

Keywords

ATL, HTLV-1, leukemogenesis

Mouse model of ATL

Authors

Jun-ichi Fujisawa, Takaharu Kimura, and Runze Xun

removeClassification

NDRG2 is a PP2A recruiter that suppresses HTLV-1-activated PI3K/AKT and NF-κB signaling pathways.

Authors

Kazuhiro Morishita, Shingo Nakahata, and Tomonaga Ichikawa

Keywords

ATL, NDRG2, PI3K, NF-κB

Comprehensive genomic characterization of adult T-cell leukemia/lymphoma.

Authors

Keisuke Kataoka, Yasunobu Nagata, Akira Kitakata, Aiko Sato, Yoichi Tutoki, Junichiro Yasunaga, Hiroyuki Aburatani, and Masao Matsuoka

Keywords

ATL, comprehensive genomics, somatic mutations

Immunotherapy for adult T-cell leukemia/lymphoma: Multidisciplinary therapeutic approaches using immune-mechanism

Authors

Keywords

Immunotherapy, ATL, lymphoma, multidisciplinary approach
Drug resistance of molecular target therapy

E1107

ABCBS overexpression in EGFR-TKI resistant HCC4006 cells with EMT feature causes cross-resistant to anti-tubulin agents

Hiroshi Mecchanisms and overcome of anticancer drug resistance

E1108

Molecular and pathological evolution in acquisition of resistance to EGFR-TKI - 17090M mutation and SCLC transformation

Kenichi Suda

E1109

New resistance mechanisms to second-generation ALK inhibitor Ceritinib (LDK378)

E1110

Enhanced targeting of pro-survival and pro-apoptotic signaling pathways by bortezomib/dipiridamole novel combination

Ahmed F. GODA

J1112

Induction of multidrug resistance in multiple myeloma by RANK/RANKL system mediates activation of signaling pathway

Masanobu Tsubaki

J1113

Long-term anti-VEGF antibody therapy potentiates malignant behavior of CRC via intratumoral hypoxia and STC2 expression

Shinichiro Miyazaki

J1114

By inhibiting Src overcome multidrug resistance in multidrug-resistant myeloma cells

Arisa Fujita
E-1111 The prosurvival role of the tauferin transporter SLC6A6 in multidrug resistance of colorectal cancer
大腸がんの多重耐性におけるタウファーレントランスポーター SLC6A6 の生存促進的役割
安永 正浩、松村保広（国立がん研究・東・臨床研究新薬開発センター）

E-1112 Poly(ADP-ribose) polymerase inhibitor olaparib (AZD2281) potentiates SN-38 cytotoxicity in colon cancer cells
Makiko Tahara, Takeshi Inoue1, Yasuhiro Matsumura (Div. of Developmental Therap., Natl. Cancer Ctr. Hosp. East)
ヒト大腸癌細胞株において PARP 阻害剤である olaparib は SN-38 の効果を増強する
田原 真紀子1, 井上 剛志1, 宮倉 安幸1, 堀江 久永1, 安田 和男1, 寺野 康吉1（栃木県立がんセンター・研・がん遺伝子研・自治医大・消化器外科）

E-1113 Upregulation of HO-1 in colorectal cancer with increased circulation CO levels, potentially affects chemosensitivity
大腸癌患者における腫瘍内オキシゲナーゼ-1 の発現と血中一酸化炭素の上昇、及びそれの化学療法感受性に対する影響
方 華1, 任 紅寛1, 嶌 龍1, 田村 浩1（崇城大 DDS 研究所、崇城大・薬・微生物学、崇城大・生物生命・応用微生物）

E-1114 Carbonate apatite nanoparticle system enhances solid tumor imaging by reducing tumor interstitial fluid pressure
炭酸アパタイトナノ粒子は団円腫瘍の間質液圧を下げ、イメージング増強効果を示した
呉 信, 山本 浩文, 梶村 守, 田川 咲, 竹政 伊知郎, 水島 恒和, 土岐 宏一郎, 森 正樹（大阪大学・医・消化器外科）

E-1115 The eradication of lymph node metastasis of early colorectal cancers using telomerase-dependent replicating adenovirus
テロメラーゼ依存型増殖型アデノウイルス製剤を用いた早期大腸癌の微小リンパ節転移制御
菊地 譲次, 岸本 富行, 田中 信行, 黒田 新士, 西崎 正彦, 香川 健幸, 清田 俊彦, ロバート ホフマン2, 畠原 俊義（岡山大・院医・消化器外科, 2 オンコリス 株, 3 カリフォルニア大学 サンディエゴ校 外科, 4 アンチキャンサー 株）
A1

<table>
<thead>
<tr>
<th>Zone</th>
<th>P3-1</th>
<th>P1001</th>
<th>P3-2</th>
<th>P1007</th>
<th>P3-4</th>
<th>P1019</th>
<th>P3-5</th>
<th>P1025</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>HTLV-1 (oncogenesis)</td>
<td>EBV</td>
<td>HTLV-1 (therapy)</td>
<td>HPV</td>
<td>P1019</td>
<td>Inflammatory responses</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

First half

<table>
<thead>
<tr>
<th>P3-1</th>
<th>P1002</th>
<th>P3-2</th>
<th>P1008</th>
<th>P3-4</th>
<th>P1010</th>
<th>P3-5</th>
<th>P1020</th>
</tr>
</thead>
<tbody>
<tr>
<td>p102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Second half

<table>
<thead>
<tr>
<th>P3-1</th>
<th>P1003</th>
<th>P3-2</th>
<th>P1009</th>
<th>P3-4</th>
<th>P1011</th>
<th>P3-5</th>
<th>P1021</th>
</tr>
</thead>
<tbody>
<tr>
<td>p103</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A2

<table>
<thead>
<tr>
<th>Zone</th>
<th>P3-7</th>
<th>P4-1</th>
<th>P5-1</th>
<th>P5-2</th>
<th>P5-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>Diagnosis and treatment of virus / inflammation-associated cancers</td>
<td>Identification and characterization of cancer-related genes</td>
<td>Signal transduction (1)</td>
<td>Signal transduction (2)</td>
<td>Signal transduction (3)</td>
</tr>
</tbody>
</table>

First half

<table>
<thead>
<tr>
<th>P3-7</th>
<th>P4-1</th>
<th>P5-1</th>
<th>P5-2</th>
<th>P5-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Second half

<table>
<thead>
<tr>
<th>P3-7</th>
<th>P4-1</th>
<th>P5-1</th>
<th>P5-2</th>
<th>P5-3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A3

<table>
<thead>
<tr>
<th>Zone</th>
<th>P5-4</th>
<th>P5-5</th>
<th>P5-7</th>
<th>P5-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3</td>
<td>miRNA and cancer therapy</td>
<td>Regulation of cancer cell functions by miRNA (1)</td>
<td>Tumor-suppressive miRNA</td>
<td>miRNAs as biomarkers</td>
</tr>
</tbody>
</table>

First half

<table>
<thead>
<tr>
<th>P5-4</th>
<th>P5-5</th>
<th>P5-7</th>
<th>P5-8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Second half

<table>
<thead>
<tr>
<th>P5-4</th>
<th>P5-5</th>
<th>P5-7</th>
<th>P5-8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The table structure and content are designed to highlight various sections of a document, such as virus, infection, inflammation and cancer, Oncogenes and tumor suppressor genes, Signal transduction and gene expression.
- Poster speakers are requested to mount poster on the assigned board. The layout on the left shows the poster zone and the board number. Please check the board number for each program number in the list below and you can find your poster location.
 - Board number
 - P-0001: Program number
- Poster panels of each booth are divided into 6 (or 5) sessions and poster discussion is conducted in 3 series of 2 sessions (I - II).
- The first half of the session (I) starts at 17:00. The second half of the session (II) starts at 17:45.

<table>
<thead>
<tr>
<th>B1</th>
<th>B1-1</th>
<th>B1-2</th>
<th>B1-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Signal transduction and gene expression</td>
<td>5</td>
<td>Signal transduction and gene expression</td>
</tr>
<tr>
<td>First half</td>
<td>miRNA expression profiling</td>
<td>1</td>
<td>P-1110</td>
</tr>
<tr>
<td>2</td>
<td>P-1111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>P-1112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>P-1113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>P-1114</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>P-1115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Epigenetics</td>
<td>9</td>
<td>P-128</td>
</tr>
<tr>
<td>11</td>
<td>Characteristics of cancer cells</td>
<td>11</td>
<td>P-1152</td>
</tr>
<tr>
<td>First half</td>
<td>Cancer stem cells of digestive organs (1)</td>
<td>1</td>
<td>P-1146</td>
</tr>
<tr>
<td>2</td>
<td>P-1147</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>P-1148</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>P-1149</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>P-1150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>P-1151</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second half</td>
<td>Cancer stem cells of digestive organs (2)</td>
<td>7</td>
<td>P-1152</td>
</tr>
<tr>
<td>8</td>
<td>P-1153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>P-1154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>P-1155</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>P-1156</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Invasion and metastasis</td>
<td>10</td>
<td>P-1128</td>
</tr>
<tr>
<td>Second half</td>
<td>DNA methylation (1)</td>
<td>7</td>
<td>P-1116</td>
</tr>
<tr>
<td>8</td>
<td>P-1117</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>P-1118</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>P-1119</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>P-1120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>P-1121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Characteristics of cancer cells</td>
<td>11</td>
<td>P-1162</td>
</tr>
<tr>
<td>First half</td>
<td>Functional molecules in cancer stem cell (1)</td>
<td>13</td>
<td>P-1157</td>
</tr>
<tr>
<td>14</td>
<td>P-1158</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>P-1159</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>P-1160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>P-1161</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second half</td>
<td>Functional molecules in cancer stem cell (2)</td>
<td>19</td>
<td>P-1162</td>
</tr>
<tr>
<td>20</td>
<td>P-1163</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>P-1164</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>P-1165</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>P-1166</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Characteristics of cancer cells</td>
<td>11</td>
<td>P-1178</td>
</tr>
<tr>
<td>First half</td>
<td>Cancer stem cell (2)</td>
<td>1</td>
<td>P-1178</td>
</tr>
<tr>
<td>2</td>
<td>P-1179</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>P-1180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>P-1181</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>P-1182</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>P-1183</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second half</td>
<td>Cancer stem cell (3)</td>
<td>7</td>
<td>P-1184</td>
</tr>
<tr>
<td>8</td>
<td>P-1185</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>P-1186</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>P-1187</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>P-1188</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>P-1189</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Cancer immunity</td>
<td>12</td>
<td>P-1195</td>
</tr>
<tr>
<td>First half</td>
<td>Cancer stem cell (4)</td>
<td>13</td>
<td>P-1190</td>
</tr>
<tr>
<td>14</td>
<td>P-1191</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>P-1192</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>P-1193</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>P-1194</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second half</td>
<td>Cancer stem cell (5)</td>
<td>19</td>
<td>P-1195</td>
</tr>
<tr>
<td>20</td>
<td>P-1196</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>P-1197</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>P-1198</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>P-1199</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>P-1200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>B3-1</td>
<td>B3-2</td>
<td>B3-3</td>
</tr>
<tr>
<td>12</td>
<td>Cancer immunity</td>
<td>12</td>
<td>P-1212</td>
</tr>
<tr>
<td>First half</td>
<td>Mechanisms of cancer immune response</td>
<td>1</td>
<td>P-1212</td>
</tr>
<tr>
<td>2</td>
<td>P-1213</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>P-1214</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>P-1215</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>P-1216</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>P-1217</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>P-1223</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>P-1224</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>P-1225</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>P-1226</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>P-1227</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second half</td>
<td>Evaluation of immune status and immunobiomarkers</td>
<td>7</td>
<td>P-1218</td>
</tr>
<tr>
<td>8</td>
<td>P-1219</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>P-1220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>P-1221</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>P-1222</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Cancer immunity</td>
<td>12</td>
<td>P-1228</td>
</tr>
<tr>
<td>First half</td>
<td>Immunopathology of cancer metastasis and inflammation</td>
<td>19</td>
<td>P-1228</td>
</tr>
<tr>
<td>20</td>
<td>P-1229</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>P-1230</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>P-1231</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>P-1232</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>P-125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>P-126</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>P-127</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>P-128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>P-129</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second half</td>
<td>Antitumor effector cell and its induction (1)</td>
<td>19</td>
<td>P-1228</td>
</tr>
<tr>
<td>20</td>
<td>P-1229</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>P-1230</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>P-1231</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>P-1232</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>P-1233</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>P-1234</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>P-1235</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>P-1236</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>P-1237</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
12 Cancer immunity

<table>
<thead>
<tr>
<th>First half</th>
<th>Second half</th>
</tr>
</thead>
<tbody>
<tr>
<td>P12-9</td>
<td>P12-11</td>
</tr>
<tr>
<td>Antitumor effector cell and its induction (2)</td>
<td>Antitumor effector cell and its induction (4)</td>
</tr>
<tr>
<td>p122</td>
<td>p123</td>
</tr>
</tbody>
</table>

14 Cancer basic, diagnosis and treatment

<table>
<thead>
<tr>
<th>First half</th>
<th>Second half</th>
</tr>
</thead>
<tbody>
<tr>
<td>P12-10</td>
<td>P12-12</td>
</tr>
<tr>
<td>Antitumor effector cell and its induction (3)</td>
<td>Antitumor effector cell and its induction (5)</td>
</tr>
<tr>
<td>p122</td>
<td>p123</td>
</tr>
</tbody>
</table>

14 Cancer basic, diagnosis and treatment

<table>
<thead>
<tr>
<th>First half</th>
<th>Second half</th>
</tr>
</thead>
<tbody>
<tr>
<td>P14-3</td>
<td>P14-5</td>
</tr>
<tr>
<td>Esophageal carcinoma (3)</td>
<td>Urological tumor (2)</td>
</tr>
<tr>
<td>p125</td>
<td>p126</td>
</tr>
</tbody>
</table>

14 Cancer basic, diagnosis and treatment

<table>
<thead>
<tr>
<th>First half</th>
<th>Second half</th>
</tr>
</thead>
<tbody>
<tr>
<td>P14-8</td>
<td>P14-10</td>
</tr>
<tr>
<td>Urological tumor (5)</td>
<td>Urological and brain tumors</td>
</tr>
<tr>
<td>p128</td>
<td>p129</td>
</tr>
</tbody>
</table>

14 Cancer basic, diagnosis and treatment

<table>
<thead>
<tr>
<th>First half</th>
<th>Second half</th>
</tr>
</thead>
<tbody>
<tr>
<td>P14-9</td>
<td>P14-11</td>
</tr>
<tr>
<td>Urological tumor (6)</td>
<td>Lung cancer (1)</td>
</tr>
<tr>
<td>p128</td>
<td>p129</td>
</tr>
</tbody>
</table>

14 Cancer basic, diagnosis and treatment

<table>
<thead>
<tr>
<th>First half</th>
<th>Second half</th>
</tr>
</thead>
<tbody>
<tr>
<td>P14-14</td>
<td>P14-16</td>
</tr>
<tr>
<td>Ovarian cancer (1)</td>
<td>Uterine cancer (1)</td>
</tr>
<tr>
<td>p131</td>
<td>p131</td>
</tr>
</tbody>
</table>

14 Cancer basic, diagnosis and treatment

<table>
<thead>
<tr>
<th>First half</th>
<th>Second half</th>
</tr>
</thead>
<tbody>
<tr>
<td>P14-15</td>
<td>P14-17</td>
</tr>
<tr>
<td>Ovarian cancer (2)</td>
<td>Uterine cancer (2)</td>
</tr>
<tr>
<td>p131</td>
<td>p132</td>
</tr>
</tbody>
</table>

15 Diagnosis

<table>
<thead>
<tr>
<th>First half</th>
<th>Second half</th>
</tr>
</thead>
<tbody>
<tr>
<td>P15-1</td>
<td>P15-2</td>
</tr>
<tr>
<td>Diagnosis by tumor markers and biomarkers (1)</td>
<td>Diagnosis by tumor markers and biomarkers (2)</td>
</tr>
<tr>
<td>p133</td>
<td>p133</td>
</tr>
</tbody>
</table>
• Poster speakers are requested to mount poster on the assigned board. The layout on the left shows the poster zone and the board number. Please check the board number for each program number in the list below and you can find your poster location.

<table>
<thead>
<tr>
<th>Board number</th>
<th>Program number</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-0001</td>
<td></td>
</tr>
</tbody>
</table>

• Poster panels of each booth are divided into 6 (or 5) sessions and poster discussion is conducted in 3 series of 2 sessions (I - II).

• The first half of the session (I) starts at 17:00. The second half of the session (II) starts at 17:45.

<table>
<thead>
<tr>
<th>Session</th>
<th>1st half</th>
<th>2nd half</th>
<th>3rd half</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>P15-3</td>
<td>P16-2</td>
<td>P16-4</td>
</tr>
<tr>
<td>Diagnosis</td>
<td>New cancer diagnostic technology p134</td>
<td>Other targeting reagents p135</td>
<td>Resistance to chemotherapeutic reagents p136</td>
</tr>
<tr>
<td></td>
<td>P-1380</td>
<td>P-1392</td>
<td>P-1405</td>
</tr>
<tr>
<td></td>
<td>P-1381</td>
<td>P-1393</td>
<td>P-1406</td>
</tr>
<tr>
<td></td>
<td>P-1382</td>
<td>P-1394</td>
<td>P-1407</td>
</tr>
<tr>
<td></td>
<td>P-1383</td>
<td>P-1395</td>
<td>P-1408</td>
</tr>
<tr>
<td></td>
<td>P-1384</td>
<td>P-1396</td>
<td>P-1409</td>
</tr>
<tr>
<td></td>
<td>P-1385</td>
<td>P-1397</td>
<td>P-1410</td>
</tr>
<tr>
<td></td>
<td>P-1386</td>
<td>P-1398</td>
<td></td>
</tr>
<tr>
<td>16 Molecular-targeting therapy</td>
<td>P16-1</td>
<td>P16-2</td>
<td>P16-3</td>
</tr>
<tr>
<td></td>
<td>Interaction between targeting reagents p135</td>
<td>Novel molecular targeted drug p136</td>
<td>Kinase inhibitors p137</td>
</tr>
<tr>
<td></td>
<td>P-1386</td>
<td>P-1399</td>
<td>P-1411</td>
</tr>
<tr>
<td></td>
<td>P-1387</td>
<td>P-1400</td>
<td>P-1412</td>
</tr>
<tr>
<td></td>
<td>P-1388</td>
<td>P-1401</td>
<td>P-1413</td>
</tr>
<tr>
<td></td>
<td>P-1389</td>
<td>P-1402</td>
<td>P-1414</td>
</tr>
<tr>
<td></td>
<td>P-1390</td>
<td>P-1403</td>
<td>P-1415</td>
</tr>
<tr>
<td></td>
<td>P-1391</td>
<td>P-1404</td>
<td>P-1416</td>
</tr>
<tr>
<td>D2</td>
<td>P17-1</td>
<td>P17-3</td>
<td>P19-1</td>
</tr>
<tr>
<td>Chemotherapy and endocrine therapy</td>
<td>Anticancer drug resistance (1) p137</td>
<td>Anticancer drug resistance (3) p138</td>
<td>BNCT and carbon-ion p139</td>
</tr>
<tr>
<td></td>
<td>P-1417</td>
<td>P-1428</td>
<td>P-1440</td>
</tr>
<tr>
<td></td>
<td>P-1418</td>
<td>P-1429</td>
<td>P-1441</td>
</tr>
<tr>
<td></td>
<td>P-1419</td>
<td>P-1430</td>
<td>P-1442</td>
</tr>
<tr>
<td></td>
<td>P-1420</td>
<td>P-1431</td>
<td>P-1443</td>
</tr>
<tr>
<td></td>
<td>P-1421</td>
<td>P-1432</td>
<td>P-1444</td>
</tr>
<tr>
<td></td>
<td>P-1422</td>
<td>P-1433</td>
<td></td>
</tr>
<tr>
<td>19 Radiation therapy</td>
<td>P17-2</td>
<td>P17-4</td>
<td>P19-2</td>
</tr>
<tr>
<td></td>
<td>Anticancer drug resistance (2) p137</td>
<td>Anticancer drug and cell death p138</td>
<td>Radiation sensitivity p140</td>
</tr>
<tr>
<td></td>
<td>P-1423</td>
<td>P-1434</td>
<td>P-1445</td>
</tr>
<tr>
<td></td>
<td>P-1424</td>
<td>P-1435</td>
<td>P-1446</td>
</tr>
<tr>
<td></td>
<td>P-1425</td>
<td>P-1436</td>
<td>P-1447</td>
</tr>
<tr>
<td></td>
<td>P-1426</td>
<td>P-1437</td>
<td>P-1448</td>
</tr>
<tr>
<td></td>
<td>P-1427</td>
<td>P-1438</td>
<td>P-1449</td>
</tr>
<tr>
<td></td>
<td>P-1428</td>
<td>P-1439</td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>P19-3</td>
<td>P24-2</td>
<td>P25-1</td>
</tr>
<tr>
<td>Radiation therapy</td>
<td>Hyperthermia and new agents p140</td>
<td>Cancer risk factors (2) p141</td>
<td>Bioinformatics p142</td>
</tr>
<tr>
<td></td>
<td>P-1450</td>
<td>P-1460</td>
<td>P-1469</td>
</tr>
<tr>
<td></td>
<td>P-1451</td>
<td>P-1461</td>
<td>P-1470</td>
</tr>
<tr>
<td></td>
<td>P-1452</td>
<td>P-1462</td>
<td>P-1471</td>
</tr>
<tr>
<td></td>
<td>P-1453</td>
<td>P-1463</td>
<td>P-1472</td>
</tr>
<tr>
<td></td>
<td>P-1454</td>
<td>P-1464</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-1455</td>
<td>P-1465</td>
<td></td>
</tr>
<tr>
<td>24 Epidemiology</td>
<td>Cancer risk factors (1) p140</td>
<td>P24-3</td>
<td>P25-2</td>
</tr>
<tr>
<td></td>
<td>P-1456</td>
<td>Cancer statistics, cancer control p141</td>
<td>Survival analysis, other data analysis and Bioinformatics p142</td>
</tr>
<tr>
<td></td>
<td>P-1457</td>
<td>P-1466</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-1458</td>
<td>P-1467</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-1459</td>
<td>P-1468</td>
<td></td>
</tr>
</tbody>
</table>
A high-throughput method to investigate the clonality of HTLV-1-infected cells based on provirus integration sites.

Sanae Furouzi, Tadanori Yamochi, Yosvany Lopez*, Yutaka Suzuki*, Kenta Nakai*, Sugimaru Takanabe* (Dept. of Medical Genome Science, The University of Tokyo, Dept. of Computational Biology, The University of Tokyo, Human Genome Center, The University of Tokyo)

Identification of ubiquitin ligase involved in the HTLV-1 Tax-induced IKK activation

Characterization of highly tumorigenic ATL cells fractionated by using immunodeficiency NOG mice

Characterization of highly tumorigenic ATL cells fractionated by using immunodeficiency NOG mice

The effect of anti-HTLV-1 gp46 neutralizing monoclonal antibody vaccine on primary HTLV-1 infection in a rat model

Putative ATL tumor initiating cells

Putative ATL tumor initiating cells

Putative ATL tumor initiating cells

P-1012 DISSIMILAR ACTIVITY BETWEEN HUMAN PAPILLOMVIRUS 16 AND 66 E6* PROTEINS
Warearat Unnawijit1, Fabien Loison2*, Mathurose Ponglikitmongkol3,4 (Department of Biochemistry, Faculty of science, Mahidol university, Department of Microbiology, Faculty of science, Mahidol university.)

P-1022 Human Papillomavirus Genotype Distribution in CIN2/3 and Invasive Cervical Cancer in Japanese Women
Iwao Kukimoto1, Kazunari Kondo1, Takashi Iwata1, Kei Kawana1 (Pathogen Genomics Ctr., NIID, NTT Hosp., Dept. OB/GY, Sch. Med., Keio Univ., Dept. OB/GYN, Sch. Med,.)

P-1023 Activation of NFκB limits the genome replication of human papillomavirus type 16 (HPV16) in human cervical keratinocytes
Takomu Nakahara, Katsuyuki Tanaka, Shin-ichi Ohno, Takashi Yagawa, Tohru Kiyono (National Cancer Center Research Institute, Division of Virology)

P-1015 Leptin receptor expression and loss of SOCS3 in Epstein-Barr virus-associated gastric carcinoma (EBVaGC)
Akiko Kunita, Rumki Hino, Hiroiyuki Abe, Masashi Fukayama (Dept. Pathol., Grad. Sch. Med. Univ.of Tokyo)

P-1014 The expression of Sparc in Epstein-Barr virus-associated nasopharyngeal cancer and its relation with cell competition
Satoru Kondo, Takayuki Murata, Wei-Wen Sung, Wei-Wen Sung (Dept. Pathol, Sch. Med. Univ.of Tokyo)

Room P(A1-2) Sep. 25 (Thu.) 17:00-17:45

P3-3 EBV EBV

P-1015 Leptin receptor expression and loss of SOCS3 in Epstein-Barr virus-associated gastric carcinoma (EBVaGC)
Akiko Kunita, Rumki Hino, Hiroiyuki Abe, Masashi Fukayama (Dept. Pathol., Grad. Sch. Med. Univ.of Tokyo)

P-1014 The expression of Sparc in Epstein-Barr virus-associated nasopharyngeal cancer and its relation with cell competition
Satoru Kondo, Takayuki Murata, Wei-Wen Sung, Wei-Wen Sung (Dept. Pathol, Sch. Med. Univ.of Tokyo)

Room P(A1-3) Sep. 25 (Thu.) 17:00-17:45

P3-5 Inflammatory responses

P-1025 Nitric oxide from chronic inflammation and fascin in conversion of human colon adenoma cells into adencarcinoma cells
Yusuke Kanda1, Tokuchii Kawaguchi2, Hiroshi Tazawa2, Manami Saito1, Akiko Okayama3, Hisashi Hirano4 (Dept. Microbiology, Yokohama City Univ. Sch. Med., Dept. Molecular Biology, Yokohama City Univ. Sch. Med., Advanced Medical Research Center, Yokohama City Univ. Sch. Med.)

P-1018 EBV infection and Posttransplant lymphoproliferative disorders (PTLD) following kidney transplantation
Kenichi Kita, Michihito Maruyama1, Naotake Akutsu1, Hiroshi Kitaizumi1, Kazunori Onuki1, Masayuki Hasegawa1, Hirochichi Aoyama1, Ikuo Matsumoto1, Hirofumi Noguchi1, Takehide Asano1 (Div. Sur., NHO Chiba East Hosp., Clin.Res.Ctr., NHO Chiba East Hosp.)

P-1017 Role of latent membrane protein 1 in chronic active Epstein-Barr virus infection-derived T/NK-cell proliferation
Takayuki Murata, Takuto Ito, Hidetaka Kawazu, Seiko Iwata, Yoshitaka Sato1 (Nihon University Graduate School of Medicine, Dept. Pathol, Sch. Med.)

Room P(A1-3) Sep. 25 (Thu.) 17:00-17:45

P3-5 Immature responses

Chairperson: Kei Kawanaka (Obstet. Gynecol, Faculty of Med, Univ. Tokyo)

P-1019 Activation of APOBEC3B promoter by E6/E7 oncoproteins of human papillomavirus 16
Seiichiro Mor1, Iwao Kukimoto (Pathogen Genomics Ctr., NIID)

P-1020 Analysis of HPV18 gene functions in its replication control

P-1026 Insufficient NOD1 signaling induces dysplasia in H. pylori infected gastric epithelium through β-catenin accumulation
Jun Fushiya1,2, Naoki Asano1, Akira Imatani1 (Div. Gastroenterol. Fukushima Medical University, 1Dept. Gastroenterol. Saitama Medical University, 2Department of Surgery, Nihon University School of Medicine)

P-1016 Enhanced hif-1α expression by Epstein-Barr Virus LMP1 in Nasopharyngeal Carcinoma Cells
Wei-Wen Sung1, Yi-Chih Chu1, Peing-Rong Chen1, Ming-Hui Liao1, Jeng-Woei Lee2 (Dept. of Vet. Med., NPUST, Dept. of Mol. Biol. and Human Genetics, TCU, Dept. of Otolaryngology, Hualien Tzu-Chi Medical Center, Dept. of Life Science, TCU)

P-1017 Role of latent membrane protein 1 in chronic active Epstein-Barr virus infection-derived T/NK-cell proliferation
Takayuki Murata, Takuto Ito, Hidetaka Kawazu, Seiko Iwata, Yoshitaka Sato1, Fumi Goshima, Hiroshi Kimura (Division of Virology, Nagoya University Graduate School of Medicine)

Room P(A1-2) Sep. 25 (Thu.) 17:45-18:30

P3-4 HPV HPV

Chairperson: Kei Kawanaka (Obstet. Gynecol, Faculty of Med, Univ. Tokyo)

P-1019 Activation of APOBEC3B promoter by E6/E7 oncoproteins of human papillomavirus 16
Seiichiro Mor1, Iwao Kukimoto (Pathogen Genomics Ctr., NIID)

P-1026 Insufficient NOD1 signaling induces dysplasia in H. pylori infected gastric epithelium through β-catenin accumulation
Jun Fushiya1,2, Naoki Asano1, Akira Imatani1 (Div. Gastroenterol. Fukushima Medical University, 1Dept. Gastroenterol. Saitama Medical University, 2Department of Surgery, Nihon University School of Medicine)
P-1034 Soluble ST2 modules inflammatory tumor microenvironment and inhibits neoangiogenesis and growth of pancreatic cancer

P-1035 CD163+ CXCL4- SOCS1- Macrophages Characterize Unique Microenvironment of Endometriosis-Associated Ovarian Cancers

P-1036 Construction of mouse gastric tumor microenvironment through MyD88 signalling pathway

P-1037 Analysis on regulation mechanism of genes whose expressions were reduced in long-term intracellular HCV-RNA replication Hiroe Sejima, Shinya Sato, Hiromichi Dansako, Masanori Inada, Nobuyuki Kato (Dept. Tumor Virology, Okayama Univ. Grad. Sch.)

C型肝炎ウイルスRNAの長期感染細胞培養によって発現低下した遺伝子の発現制御機構の解析

P-1038 HPV prevalence and viral types in oropharyngeal squamous cell carcinoma in Japan
Reiko Furuta, Yukiko Sato, Takashi Toshiyasu, Wataru Shimabashi, Noriko Yamamoto, Kazuyoshi Kawabata, Yoshihiro Miki, Yuichi Ishikawa, Tomoyuki Kitagawa (‘Div. Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Radiation Oncology, The Cancer Institute Hospital, IFCR, Head and Neck oncology, The Cancer Institute Hospital, JFCR, Dept. Genetic Examination, The Cancer Inst. Hospital, IFCR)

P-1039 Development of the methods of HPV vaccine efficacy measurement

P-1032 Cell surface CD74 expression is a key mediator of melanoma cell survival in response to the cytotoxic effect of IFN-γ

P-1033 Induction of antiviral activity enhanced by epigenetic reactivation of IFN-γ
Masayoshi Dazai, Takeshi Kameyama, Hiromu Suzuki, Shigeru Sasaki, Naraya Sanakotai, Akinori Takaoka (‘Division of Clinical Cancer and Immunology, IGM, Hokkaido Univ., ‘Department of Gastroenterology, Hokkaido University Graduate School of Medicine, ‘Department of Molecular Biology, Sapporo Medical University, ‘First Department of Internal Medicine, Sapporo Medical University)

P-1031 Impaired autophagy by SPINK1 insufficiency results to chronic pancreatitis
Sakae Kazuma, Masaki Ohmuraya, Kimi Araki, Katsunobu Taki, Daisuke Hashimoto, Akira Chikamoto, Ken-ichi Yamamura, Hideo Chikamori, Daisuke Hashimoto, Akira Chikamoto, Ken-ichi Yamamura, Hideo Chikamori (‘1Dept of Mol Med Sci, 2Dept of Ob & Gyn, 3Dept of Haematology, ‘National Cancer Center Research Institute, ‘National Cancer Center Hospital, ‘National Cancer Center Hospital, ‘National Cancer Center Hospital, ‘National Cancer Center Hospital)

P-1029 ISX may lead to intestinal metaplasia and cellular proliferation, contributing to gastric carcinogenesis.
Soichiro Suge, Yusaku Ishii, Takeshi Sato, Wataru Shibata, Shin Maeda (Dept. of Gastroenterology, Yokohama City Univ. Sch. Med.)

P-1028 Hypoxia induces inflammatory responses via CYLD downregulation in glioblastoma

P-1027 The roles of the CCL3-C3RR5 axis in cancer-associated fibroblast accumulation and subsequent colon cancer development
Yamato Tanabe, Soichiro Sasaki, Tomohisa Baba, Naofumi Mukaida (Div. Mol. Bioregulation and Subsequent Cancer Res. Inst., Kanazawa Univ.)

P-1026 Room A(1-2) Sep. 25 (Thu.) 17:00-17:45
Diagnosis and treatment of virus / inflammation-associanted cancers

P-1025 Room P-A2.1 Sep. 25 (Thu.) 17:45-18:30
Inflammation and cytokine

P-1024 Soluble ST2 modules inflammatory tumor microenvironment and inhibits neoangiogenesis and growth of pancreatic cancer

P-1023 Induction of antiviral activity enhanced by epigenetic reactivation of IFN-γ
Masayoshi Dazai, Takeshi Kameyama, Hiromu Suzuki, Shigeru Sasaki, Naraya Sanakotai, Akinori Takaoka (‘Division of Clinical Cancer and Immunology, IGM, Hokkaido Univ., ‘Department of Gastroenterology, Hokkaido University Graduate School of Medicine, ‘Department of Molecular Biology, Sapporo Medical University, ‘First Department of Internal Medicine, Sapporo Medical University)

P-1022 Cell surface CD74 expression is a key mediator of melanoma cell survival in response to the cytotoxic effect of IFN-γ

P-1021 Room B Sep. 25 (Thu.) 17:00-17:45
Cancer and Immunology, IGM, Hokkaido Univ., 2 Department of Molecular Biology, Sapporo Medical University, 3 Department of Cell Biol. & Anat., Hamamatsu University School of Medicine, 4 First Department of Internal Medicine, Sapporo Medical University
P-1040 Inhibitory Effects of Pycnogenol on Hepatitis C Virus Replication
Sayeh Ezzikouri1,2, Michinori Kohara1, Kyoko Kohara1 (Joint Fac. Vet. Med., Kagoshima Univ., 1Pasteur Institute of Morocco, 2Tokyo Metropolitan Institute)

P-1041 Clinical importance of HPV detection in neck lymph-node metastasis of an known primary cancer
Yukiko Satoh1, Reiko Furuta1, Takashi Toshiyasu3, Wataru Shimbashi4, Hironao Nakayama2, Nobuo Shinohara3, Kyoko Hida4, Michael Klagsbrun4 (Vascular Biology Program, Boston Childrens Hospital, Harvard Medical School, Vascular Biology, FRU. Institute for Genetic Medicine, Hokkaido University, Department of Genitourinary Surgery, Graduate school of Medicine, Hokkaido University)

P-1042 Measles virus as a potential oncolytic virotherapy against B cell lymphomas
Jun Komano1, Satoshi Takeda1, Daiki Kanbayashi1, Takako Kurata1, Hironori Yoshiyama1, Jun Komano2 (AIDS Res Ctr, Nat Inst of Infect Dis, 1Virol Div, Osaka Prefectural Inst of Public Health, 2Dept of Microbiol, Shimane Univ Faculty of Med, 2Dept Clin Lab, Nagoya Medical Center)

P-1043 Defining a healthy core microbiome in the nasopharynx
Tingting Huang1,2, Bjorn Winckler1,3, Xue Xiao2,4, Chunping Du2,4,5, Naohide Oue, Kazuhiro Sentani, Wataru Yasui1,2 (Dept. of Mol. Pathol., Hiroshima Univ)

P-1044 Sodium alginate prevents the progression of non-alcoholic steatohepatitis and liver carcinogenesis in mice.
Tsunevuki Miyazaki1, Masaya Kubota1, Takahiro Kochi1, Yohei Furuta1,2, Naohide Oue, Kazuhiro Sentani, Wataru Yasui1,2 (Dept. of Molecular Pathology, Hiroshima University, 1Dept of Pathology, Gifu University Graduate School of Medicine, 2Dept of Pathology, Gifu University Graduate School of Medicine, 3Dept of Pathology, Hamamatsu University School of Medicine, 4Dept of Pathology, Hamamatsu University School of Medicine)

P-1045 Overexpression of TRIM44 relates to invasive potential of cancer cells and malignant outcome in esophageal squamous cell carcinoma
Kawaguchi Tsutomu1, Shuhei Komatsu1, Daisuke Ichikawa1, Yukihisa Nishimura1, Shoji Hiraijima1, Mahito Miyamae2, Hikato Konishi1, Shiozaki Atsushi3, Hitoshi Fujiwara4, Kazuma Okamoto1, Hitoshi Tsuda3, Eigo Otsuji3 (Div. Surg. Dept., 1Dept. Surg., 1Kyoto Pref. Univ. Med. 2Dept. of Internal Medicine, Natl. Defense Med. Collage)

P-1046 Expression and function of Signal peptide complex 18 on colorectal cancer
Takuya Hattori1, Naohide Oue1, Kazuhiro Sentani1, Wataru Yasui1 (Dept. of Mol. Pathol., Hiroshima Univ)

P-1047 Nethrin-1 promotes medulloblastoma cell invasiveness and proliferation
Tomoshibe Akin01, Hironao Nakayama1, Nobuo Shinohara1, Kyoko Hida2, Michael Klagsbrun3 (Vascular Biology Program, Boston Childrens Hospital, Harvard Medical School, Vascular Biology, FRU. Institute for Genetic Medicine, Hokkaido University, Department of Genitourinary Surgery, Graduate school of Medicine, Hokkaido University)

P-1048 STAT1 Pathway as a novel oncogene driver in Serous Papillary Endometrial Cancer
Badiman Sharma1, Tesaka Baba2, Noriomi Matsumura3, Hyun Sook Kang4, Byusuke Murakami5, Kaoru Abiko6, Ken Yamaguchi7, Junzo Hamashima8, Masaki Mandai9, Ikko Konishi10 (1Dept. of Gynecology & Obstetrics, Kyoto University Graduate School of Medicine, 2Dept. of Obstetrics and Gynecology, Faculty of Medicine, Kinki University)

P-1049 mir-19B regulates hTERT expression through targeting PTX1 in melanoma cells

P-1050 Drug-induced Nrf2 activation accelerates malignant progression of urethane-induced lung tumors

P-1051 Identification and characterization of cancer-related genes
Yohei Miyagi1,2, Takashi Moriguchi1, Masahito Ebina3, Tatsuhiro Tsuchiya1, Noriomi Matsumura3, Hyun Sook Kang4, Byusuke Murakami5, Kaoru Abiko6, Ken Yamaguchi7, Junzo Hamashima8, Masaki Mandai9, Ikko Konishi10 (1Dept. of Molecular Pathology, Hiroshima University, 2Dept of Pathology, Gifu University Graduate School of Medicine, 3Dept of Pathology, Hamamatsu University School of Medicine, 4Dept of Pathology, Hamamatsu University School of Medicine, 5Dept of Pathology, Hamamatsu University School of Medicine, 6Dept of Pathology, Hamamatsu University School of Medicine, 7Dept of Pathology, Hamamatsu University School of Medicine, 8Dept of Pathology, Hamamatsu University School of Medicine, 9Dept of Pathology, Hamamatsu University School of Medicine, 10Dept. of Gynecology & Obstetrics, Kyoto University Graduate School of Medicine, 11Dept. of Obstetrics and Gynecology, Faculty of Medicine, Kinki University)
P-1051 Functional assessment of cancer-related genes
かん関連遺伝子の機能の解明

Chairperson: Akira Horii

座長: 堀井 明 (東北大学・院医・分子病理)

P-1051 Roles of Tsc-22 family proteins in tumorigenesis
Hirokazu Suzuki, Mitsuyasu Kato
(Dept. Exp. Path., Grad. Med. Univ., Tsukuba)

Tsc-22 ファミリーピーキングの腫瘍形成における役割

P-1052 MEPTAP enhances Tumorigenic Activities in Lung Cancer Cells
Thanh Thao Vo Nguyen, Yukihide Watanabe, Mitsuyasu Kato
(Dept. Exp. Path., Fac. Med., Univ. Tsukuba)

Thanh Thao Vo Nguyen, 渡邉 圭幸, 加藤 光保 (筑波大・院 医学療養・実験病理)

P-1053 Abrogation of protein phosphatase 6 promotes skin carcinogenesis induced by DMBA.
Katsuhisa Hayashi 1, Nobuhiro Tanuma 1, Tsushima Watanabe 1, Ikuro Sato 1, Miyuki Nomura 1, Yoji Yamashita 1, Yoichiro Kakugawa 1
(Dept. Mol. Pathol., Faculty Med, Univ. Tsukuba)

P-1054 Withdrawn

P-1055 Discovery of a novel oncoprotein by “humanized yeast project” II. Molecular mechanisms by which DynA forms tumor.
Ryuzo Sawaki, Tatsuki Kunoh, Tamio Mizukami
(Nagahama Inst. Bio-Sci. & Tech.)

“ヒト化酵母技術”による新規がんタンパク質の発見 II. dynA による腫瘍形成の分子メカニズム

P-1056 Isolation and characterization of the responsive gene(s) of monosomy 7 with EVI1 high acute myeloid leukemia
Akira Suekane, Kazuko Kaneda, Manachai Nawin, Kazuhiro Morishita

EVI1 高発現急性骨髄性白血病におけるmonosomy 7ゲノム異常の解析

P-1057 PCDH10 is required for the tumorigenicity of glioblastoma cells
Kanae Ichihara 1, Mitsutoshi Nakata 1, Tomoatsu Hayashi 1, Takuya Furuta 1, Sabit Amura 1, Akitake Mukasa 1, Shunsaku Takayanagi 1, Ryobei Ohtani 1, Nobuhito Saito 1, Tetsu Akiyama 2

PCDH10 サブ側腫瘍細胞の腫瘍形成能に必要である

P-1058 DESC1, a novel tumor suppressor, sensitizes cells to apoptosis in esophageal squamous cell carcinoma
Hai Yan Ng, Maria Li Lung
(Dept. of Clinical Oncology, HKU)
P-1064 Cell-type dependent effect of CD109 on TGF-β1 and EGF signaling in human glioblastoma cells

CD109 is a membrane protein that is overexpressed in various cancers, including glioblastoma. The authors investigated the effect of CD109 on TGF-β1 and EGF signaling in human glioblastoma cells. They found that CD109 modulated the TGF-β1 and EGF signaling pathways in a cell-type-dependent manner, which could have implications for the development of targeted therapies for glioblastoma.

P-1065 TLRA4 signaling induces imatinib-resistance in Chronic myeloid leukemia-model cells
Fujioi Tsukahara, Yoshiro Maru (Dept. Pharmacol., Tokyo Women’s Med. Univ. Sch. Med.)

The authors investigated the role of TLRA4 signaling in imatinib-resistant Chronic myeloid leukemia cells. They found that TLRA4 signaling can promote imatinib-resistance in Chronic myeloid leukemia cells, which could have implications for the development of novel therapeutic strategies to overcome imatinib resistance.

P-1066 Combination of γ-secretase inhibitor and ABT-737 shows synergistic antitumor effect in Notch expressing lung cancer
Jun Sakakibara-Konishi, Satoshi Nakagawa, Hiroshi Miyata, Kiyokazu Nakajima, Shuji Takiguchi, Masaki Mori (Dept. of Med., Hokkaido Univ. Sch. Med.)

The authors investigated the combination of a γ-secretase inhibitor and ABT-737, a Notch inhibitor, in Notch expressing lung cancer cells. They found that the combination of these two agents showed a synergistic antitumor effect, which could have implications for the development of novel therapeutic strategies for lung cancer.

P-1067 Cyanidin inhibits IL-6-induced migration of cholangiocarcinoma cells through JAK/STAT3 signaling pathway
Waraporn Komvud, Kaniskul Kitudomsub (Dept. of Biochemistry, Faculty of Science, Mahidh University)

The authors investigated the effect of cyanidin, a flavonoid compound, on IL-6-induced migration of cholangiocarcinoma cells. They found that cyanidin inhibited IL-6-induced migration through JAK/STAT3 signaling pathway, which could have implications for the development of novel therapeutic strategies for cholangiocarcinoma.

P-1068 SOCS-1 induces apoptosis of ovarian cancer cell lines via JAK/STAT3 dependent and independent pathways
Satoshi Nakagawa, Satoshi Serada, Akito Morimoto, Tomomi Takada, Yoshihiro Kimura, Yutaka Ueda, Kiyosi Yoshino, Masami Fujita, Tadashi Kimura, Tetsuji Naka (Lab. for Immune Signal, NIBIO, Dept. of Obstet. and Gynec., Osaka Univ.)

The authors investigated the role of SOCS-1 in ovarian cancer cell lines. They found that SOCS-1 induces apoptosis of ovarian cancer cell lines via JAK/STAT3 dependent and independent pathways, which could have implications for the development of novel therapeutic strategies for ovarian cancer.

P-1069 The effect of cell cycle gene therapy for gastric cancer using SOCS-1 in vitro
Rie Nakatsuka, Tsuyoshi Takahashi, Satoshi Serada, Minoru Fujimoto, Yasuhiko Miyazaki, Yukinori Kurokawa, Makato Yamasaki, Hiroshi Miyata, Kiyokazu Nakajima, Shuji Takiguchi, Masaki Mori, Yuichiro Doki, Tetsuji Naka (Gastroenterological Surg. Dept. Osaka Univ., Laboratory for Immune Signal, NIBIO)

The authors investigated the effect of SOCS-1 on cell cycle regulation in gastric cancer cells. They found that SOCS-1 inhibited cell cycle progression in gastric cancer cells, which could have implications for the development of novel therapeutic strategies for gastric cancer.

P-1070 Numerical aberration of AKT genes and overexpression of Akt isoforms

The authors investigated the numerical aberration of AKT genes and overexpression of Akt isoforms in various cancers. They found that numerical aberration of AKT genes and overexpression of Akt isoforms were common in various cancers, which could have implications for the development of novel therapeutic strategies for cancer.

P-1071 Inhibition of WT1 protein expression and induction of cell cycle arrest in K562 cell line by Saraphi seed extracts

The authors investigated the effect of Saraphi seed extracts on WT1 protein expression and cell cycle arrest in K562 cell line. They found that Saraphi seed extracts inhibited WT1 protein expression and induced cell cycle arrest in K562 cell line, which could have implications for the development of novel therapeutic strategies for cancer.

P-1072 Possible roles of hepatocytic MKK7 in repair processes following liver injury

The authors investigated the role of hepatocytic MKK7 in repair processes following liver injury. They found that hepatocytic MKK7 played a role in repair processes following liver injury, which could have implications for the development of novel therapeutic strategies for liver disease.

P-1073 Inhibition of AKT signaling in human glioblastoma cells by blocking co-activation of WT1 and API1

The authors investigated the effect of blocking co-activation of WT1 and API1 on AKT signaling in human glioblastoma cells. They found that blocking co-activation of WT1 and API1 inhibited AKT signaling in human glioblastoma cells, which could have implications for the development of novel therapeutic strategies for glioblastoma.
miR-1084: miR-103/107 modulates multi-drug resistance in human gastric carcinoma cells by targeting caveolin-1
Ye Zhang, Xiujuan Qu, Yunpeng Liu, Yuee Teng, Ling Xu, Zhi Li, Yanqun Ma, Yibo Fan, Ce Li, Shizhou Liu, Xuejun Hu, Jingdong Zhang (The First Hospital of China Medical University)

miR-P520d in the HT-29 cell line and colorectal tissues of patients transfected with miR-P520d
Yoshitaka Ishihara, Noritama Miura (Pharmacotherapeutics, Tottori Univ., Sch. Med.)

miR-P5-5: Regulation of cancer cell functions by miRNA (1)
Chairperson: Naohiko Seki (Dept. Functional Genomics, Chiba Univ. Sch. Med.)
座長: 開 直彦 (千葉大学大学院・医学研究院・機能ゲノム学)

P-1077: Up-regulation of the Maspin Gene Expression by transforming growth factor-β (TGF-β) in human cervical carcinoma cells
Ariyaphong Wonpongprapavich, Kongthawat Chairatvit (Dept. of Biochemistry, Fac. of Medicine, CMU, Dept. of Oral Biology, Fac. of Dentistry, MU)

P-1078: AREG regulates Warburg effect in colorectal cancer through the binding of MLX to ChoRE in the AREG promoter

AREG はプロモーター領域 ChoRE の MLX 結合を介して大腸癌の糖酵解の誘導を制御する

P-1079: The role of the Erb/mesothelin signal on transduction in liquid raft
Danejing Zhang, Yoshiyuki Kobayashi, Okio Hino (Dept. Pathology and Oncology, Juntendo Univ., Med. Sch., Dept. Molecular Pathogenesis, Juntendo Univ., Grad. Sch. Med.)

P-1080: MiR-218 improves cellular radiosensitivity via inducing apoptosis in cervical cancer
haifeng quii, jing li, yuan wangi, rufan dongii, jinjun yui (Dept. of Ob/Gyn, International Peace Maternity and Child Health Hospital, ‘State Key Laboratory of Oncology, Sun Yat-sen University Cancer Center, Dept. of Ob/Gyn, Affiliated Hospital of Jiangnan University)

P-1092 Helicobacter pylori infection via miR-328/C44 in gastric mucosa causes gastric cancerinit initiation and progression. Keisuke Miyaoka, Takegaku Sugahara, Kojirou Eto, Daikain Izumi, Yukihiromi Yoshihisa, Shiro Iwagami, Yoshishimi Baba, Yasuo Sakamoto, Yuji Miyamoto, Naoya Yoshida, Hideo Baba (Dept. Gastroenterological Surgery, Kumamoto U Med., Sch. Med.)

P-1094 Hyponxia related microRNA, miR-199a-3p, inhibits ovarian cancer dissemination through the suppression of c-Met expression. Yasuko Kino, Kenjiro Sawada, Seiji Mabuchi, Tadashi Kimura (Dept. of Obstetrics and Gynecology, Faculty of Med., Osaka Univ.)

P-1096 The role of miR-30a in the highly migratory pancreatic cancer cell line. Koichiro Tsukasa, Shuichiro Matsubara, Yumi Miyazaki, Toru Obara, Shoko Ueno, Sonshin Takao (Frontier Science Research Center, Kagoshima University)

Room P(A-3-2) | 25 (Thu.) 17:45-18:30
座長: 黒田 雅彦 (東京医科大・医・分子病理)

新規感抑制性microRNAとしてのMir-634の同定
藤原 直人1,2,3, 河野 昃希1,2,3, 鳥原 健平1,2,3, 関 隆弥1,2,3, 関 聖司1,2,3, 中川 昌之1 (鹿児島大学 医療科学研究科・泌尿器科学科)

膀胱癌においてmiR-451a/144クラスターは癌抑制的に機能する
松下 良幸1,2,3, 内田 一也1,2,3, 石原 明1,2,3, 横田 豊1,2,3, 松田 矢生1,2,3, 中川 昌之1 (鹿児島大学 医療科学研究科・泌尿器科学科, 2千葉大学 大学院 機能科学部)

P-1100 MiRNA-24 functions as a tumor suppressor through regulating PDK1 in renal cell carcinoma. Tomoaki Ishihara1, Takeshi Chiyomaru1, Satoru Inoguchi1, Hideki Enokida2, Naohiko Seki3, Masayuki Nagakawa1 (Dept. of Urol., Grad. Sch. of Med., Kagoshima Univ., Dept. of Functional Genomics, Grad. Sch. of Med., Chiba Univ.)

腎細胞癌においてミリノ-24はPDK1を抑制し腫瘍抑制的に働く
矢野 健明1,2,3, 小原take1,2,3, 原田 豊1,2,3, 岩田 博1,2,3, 中川 昌之1 (鹿児島大学 医療科学研究科・泌尿器科学科, 2千葉大学 大学院 機能科学部)

P-1101 Tumor suppressive miRNA-24 inhibits bladder cancer through regulating FOXMI. Satoru Inoguchi1, Takeshi Chiyomaru1, Tomoki Ishihara1, Hideki Enokida2, Naohiko Seki3, Masayuki Nagakawa1 (Dept. of Urol., Grad. Sch. of Med., Kagoshima Univ., Dept. of Functional Genomics, Grad. Sch. of Med., Chiba Univ.)

膀胱癌においてmiRNA-24はFOXMIを制御し腫瘍抑制的に働く
矢野 健明1,2,3, 小原take1,2,3, 原田 豊1,2,3, 岩田 博1,2,3, 中川 昌之1 (鹿児島大学 医療科学研究科・泌尿器科学科, 2千葉大学 大学院医学研究所・機能科学部)

P-1102 miRNA-206 function as a tumor suppressor via targeting MET in lung squamous cell carcinoma. Hiroko Matakai1, Naohiko Seki2, Takeshi Tiyomaru1, Hideki Enokida1, Keiko Mizuno1, Masayuki Nakagawa2, Hiromasa Inoue2 (Dept. of Pulm., Grad. Sch. of Med., Kagoshima Univ., Dept. of Functional Genomics, Grad. Sch. of Med., Chiba Univ., Dept. of Urol., Grad. Sch. of Med., Kagoshima Univ.)

肺癌肺腺癌においてmiRNA-206はMETを標的とし腫瘍抑制的に機能する
保木 信子1,2,3, 関 剛彦1,2,3, 内田 一也1,2,3, 原田 豊1,2,3, 水野 圭子1,2,3, 中川 昌之1,2,3, 井上 俊雄1 (鹿児島大学 医療科学研究科・呼吸器科学科, 2千葉大学 大学院 機能科学部, 3鹿児島大学 医療科学研究科・泌尿器科学科)
P-1103 Identification of miRNA-X as a tumor suppressor in BRAF mutant colorectal cancer
Hidekazu Takahashi1, Masanobu Takahashi2, Hideki Shimodaira1, Shin Takahashi, chikashi Ishikawa2 (*Clin.Oncol.idac, *Clin.Onc.TUH)
BRAF変異陽性大腸癌において癌抑制をめぐるmiRNAとして機能する
miRNA-Xの特定

P-1104 microRNA-143/145 cluster functions as a tumor suppressor by targeting GOLM1 in prostate cancer
マイクロRNA-143/145 クラスターは前立腺癌において、GOLM1を標的とした、癌前駆動因子として機能する
小鳥 聡子1, 坂田 英樹2, 吉田 裕史3, 井出 近 俊彦4, 千代丸 茂5, 木下 良5, 岡田 一義5, 布施 美紀5, 西川 里佳5, 納谷 早男5, 中川 昌之5, 間迪雷2, 三宅 美1, 医学部 医学科・病理学

P-1105 Serum microRNA-26a as a biomarker in patients with oral squamous cell carcinoma
Norihiko Tokuzen1, Koh-ichi Nakashiro2, Hiroshi Tanaka1, Kazuki Iwamoto1, Hiroyuki Hamakawa1 (*Dept. Of Oral and Maxillofacial Surgery, Ehime Univ., Sch. Med.)
口腔粘膜皮膚癌におけるバイオマーカーとしての血清microRNA-26a の同定
徳善 祐彦1, 中村 公1, 田中 宏史1, 岩本 和樹2, 浜本 裕之3（愛媛大学 院外医学部 医学部口腔顔面外科学）

P-1106 Circulating miR-18A: A Sensitive Cancer Screening Biomarker in Digestive Tract Cancer
Wataru Okaishi1, Shuhei Komatsu1, Daisuke Ichikawa1, Ryo Morimura1, Shoji Hirajima1, Masahiro Tsujita1, Hirokata Konishi1, Atsushi Shiozaki1, Hisashi Ikoma1, Hitoshi Fujiwara1, Kazuma Okamoto1, Eigo Otsuji1 (Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine)
消化器癌における血液マイクログループRNA・microRNA-18Aについて
島井 輝1, 小松 幹1, 周平 大1, 森川 玲1, 平田 榮1, 丹波 聖彦1, 西野 廣1, 西野 伸1, 岩永 光1

P-1107 Circulating mir-223 in blood: biomarker potential reflects a tumor suppressive role in the development of oral cancer
歯肉癌患者血漿を用いた網羅的解析により発見したmiR-223の機能解析と臨床的有用性の検討
橘 宽之1, 松原 力1, 武田 裕司2, 張 弘1, 湯浅 恵喜1, 吉田 雪恵1 (*山形大学医学部歯学部口腔衛生学科, *山形大学医学部免疫学科, *山形大学医学部医学・分子生物学科)

P-1108 MicroRNA-7 is associated with tumor development in esophageal squamous cell carcinoma
Keigo Harag, Takehiko Koborori1, Yuji Kamukura, Hiroaki Honjo, Makoto Sakai, Makoto Sotoda, Tatsuya Miyazaki, Hiroyuki Kuvano (*Dept. General Surgery, Gunma Univ.)
microRNA-7は食道扁平上皮癌の腫瘍進展に関与する
原 さと, 桑原 武洋, 桑原 亜子, 本村 裕生, 酒井 真, 宗田 真, 内山 達也, 桑野 博行（静岡医科大学 病理化学外科）

P-1109 Functional analysis of miR-107 in uterine papillary serous adenocarcinoma.
子宫体部円錐性腺癌におけるmiR-107の機能解析
鈴木 史総, 水野 晋, 山崎 洋, 佐藤 いすか, 宇都部 裕之, 新倉 仁, 畑野 公伸, 鳥居 宏信(*東北大学 医学科・産婦人科学, *東北大学病院 臨床研究推進センター, *東北大学医学部 医学診断学)

P-1110 microRNA expression profiling MATCH-MARK2 project profile
Chairperson: Hideo Iba (Inst. of Med. Sci., Univ. of Tokyo.)
座長: 伊藤 英夫（東大、医科研、宿営寄生虫学）

P-1111 Alteration of the micro RNA expression in metastatic liver gastrointestinal stromal tumors
消化管間質腫瘍の転移ヘのマイクログループRNA発現変化
篠塚 隆利, 鈴野 真一郎, 岡崎 真一郎, 尾崎 賢平1, 浜戸 慎吾, 倉田 晃, 澤田 兆, 清田 洋, 坂本 弘之, 今野 弘之 (*浜松医科大学 第外科, *浜松医科大学附属腫瘍内科, *浜松医科大学 病理部, *浜松医科大学 外科)

P-1112 Relationship between the expression of onco-related miRNAs and endoplasmic appearance in colorectal tumors
Yoshitsugu Nakagawa1, Yukihito Akao1, Ichiro Hirata1 (*Dept. Gastroenterology, Fujita Health University, *Graduate Sch. Drug Discovery and Medical Information Sciences, Gifu Univ.)
大腸癌の形態とmicroRNA-143, -145, -7, -34aの発現異常
中川 春生, 赤尾 隆博, 平井 一郎, 住野 了1 (* البطانة السرطان, *消化放射線科学, *岐阜大学医学部 連合創傷医療情報研究科)

P-1113 Identification of Long Non-Coding RNAs Associated with Recurrence of Breast Cancer
乳がん再発に関与するLong Non-Coding RNAの探索
竹下 友昭, 小野 真由子, 奥村 心, 田村 哲也, 榎本 圭子, 村田 研治, 鈴木 俊章, 田村 伸, 木村 健, 佐藤 隆二, 木村 伸, 木村 快, 田村 伸, 木村 真, 田村 伸, 木村 真, 田村 伸, 木村 真

P-1114 Identification of microRNA controlling TAZ in the hepatocellular carcinoma.
Takaihara Hikari, Hiromitsu Hayashi, Takayasu Kaida, Kouta Arima, Katsunobu Taki, Keita Sakamoto, Hideyuki Kurok, Hidetoshi Nitta, Daiichika Hashimoto, Akira Chikamoto, Toru Beppu, Hideo Baba1 (*Dept. Gastroenterological Surgery, Hamamatsu Univ.)*
肝細胞癌の治癒に関与するmiRNAの同定
東 尚晃, 林 光, 鈴木 剛一, 有馬 浩太, 高木 善也, 坂本 達也, 黒木 奇形, 新田 真利, 橋本 大輔, 近藤 亮, 別府 透, 馬場 秀夫 (京都大学付属病院 肝臓胆管内科)

P-1115 Comprehensive analysis of miRNA expression involved in the malignant transformation of hepatocellular carcinoma
Akira Tomie1, Kohichiroh Yasui1, Tomoko Kitachi1, Yasuyuki Gen1, Chinoyoshi Doih1, Yuji Naito1, Shingi Tanaka1, Shigeki Arii1, Yoshihito Itoh1 (*Dept. of Gastroenterology and Hepatology, Kyoto Prefectural University of Med., *Dept. of Hepato-Biliary-Pancreatic Surgery, Tokyo Med. and Dental Univ., *Hamamatsu Rosai Hospital.)
肝細胞癌の癌化に関与するmiRNA発現の網羅的解析
荒江 章, 安田 幸一郎, 北村 竜司, 玄 泰行, 土肥 敏, 内田 裕二, 田中 真二, 有井 晃樹1, 伊藤 裕人 (*京都大学医学部消化器内科, *東京医科歯科大学 胃腸腫瘍外科, *浜松労災病院)
P-1116 Estimation of the Fraction of Gastric Cancer Cells Using DNA Methylation Markers
Liang Zhang1, Naoko Hattori1, Yuki Yoda1, Satoshi Yamashita1, Yasuyuki Seto1, Toshikazu Ushijima1 (Division of Epigenomics, National Cancer Center Research Institute, Department of Gastrointestinal Surgery, The University of Tokyo)

P-1117 High sensitivity analysis of aberrant DNA methylation by targeted deep sequencing using a benchtop sequencer
Satoshi Yamashita, Takayoshi Kishino, Reiko Nagano, Toshikazu Baba, Keisuke Kosumi, Keisuke Miyake, Kohei Kumegawa1, Reo Maruyama1, Eiichiro Yamamoto1, Naoko Hattori1, Yukie Yoda1, Satoshi Yamashita1, Takayoshi Kishino, Reiko Nagano, Toshikazu Baba, Keisuke Kosumi, Keisuke Miyake, Kohei Kumegawa1, Reo Maruyama1, Eiichiro Yamamoto1, Naoko Hattori1, Yukie Yoda1, Satoshi Yamashita1 (Division of Epigenomics, National Cancer Center Research Institute, Department of Gastrointestinal Surgery, The University of Tokyo)

P-1118 S100A4 expression and LINE-1 hypomethylation in esophageal squamous cell carcinoma may promote tumorigenesis
Yuki Kiyozumi, Yoshifumi Baba, Keisuke Kosumi, Keisuke Miyake, Kazuto Harada, Ruyuichi Karashima, Yukiharu Hiyoshi, Shiroi Igawami, Yasuo Sakamoto, Yuji Miyamoto, Naoya Yoshida, Hideo Baba (Department of Gastroenterological Surgery, Kumamoto University)

P-1119 Characteristic methylation patterns of RECK CpG island in human breast cancer cells
Gongqing Shi1, yoko yoshida1, kanako yuki1, kiyotsugu yoshikawa1, masakazu2, makoto noda1 (Dept Mol Onco, Grad Sch Med, Kyoto Univ, Lab, Magil. Contr. Res., Grad Sch Med, Kyoto Univ, (Dept Surg, Grad Sch Med, Kyoto Univ.)

P-1120 Epigenetic silencing of DGKG and the resulting phenotype in human breast cancer cells

P-1121 DNA methylation may have two biological roles in neuroblastoma depending on the ploidy status and age of patients
Masayuki Haruta1, Takehiko Kamiyama1, Akira Nakagawara1, Yasuhiro Kaneko1 (Res. Inst. Clin. Oncol., Saitama Cancer Center, Res. Inst., Chiba Cancer Ctr.)

P-1122 Possible role of TET1 dysregulation to induce aberrant DNA methylation in colorectal cancer

P-1123 Methyl-CpG targeted DNA demethylation by TET hydroxylase activity suppresses the growth of cancer cells
Shinichi Fukushige1, Yuki Akita1, Akira Horii1 (Dept. Mol. Path., Tohoku Univ. Sch. Med.)

P-1124 Growth suppression of intestinal tumor stem cells by inhibition of DNA methylation
Kohta Toshimitsu, Yoshimasa Saito, Hidetsugu Saito1 (Div. Pharmacotherap., Facul. Pharm., Keio Univ.)

P-1125 MiRNA-dependent regulation of DNA methyltransferase-3b in the retinoid acid metabolic genes during oral carcinogenesis

P-1126 Genome-wide identification of lincRNAs epigenetically silenced by DNA methylation in colon cancer

P-1127 Identification of STEAP4 as a novel methylated gene in hepatocellular carcinoma
Nobuhisa Yamada1,2, Kohichiro Yasui1, Tomoko Kitaichi1, Akira Tomie1, Yasuyuki Gen1, Osamu Dohi1, Shinji Tanaka1, Shigeki Arii1, Yoshito Ito1 (1 Dept. of Gastroenterology and Hepatology, Kyoto Pref. Univ. of Med., (Matsushita Memorial Hosp., (Dept. of Hepato-Biliary-Pancreatic Surgery, Tokyo Med. and Dent. Univ., (Hamamatsu Rosai Hosp.)

P-1128 DNA methylation in colorectal cancer
Shinichi Fukushige1, Yuki Akita1, Akira Horii1 (Dept. Mol. Path., Tohoku Univ. Sch. Med.)

P-1129 Daily LS AM PM Posters
P9-1 DNA methylation (1)
DNA methylation (1)
Chairperson: Keiko Shinjo (Dept. of Epigenomics, Nagoya City Univ. Grad. Sch. of Med. Sci.)
座長: 新城 恵子（名市大・医学・遺伝子制御）
P-1116 Estimation of the Fraction of Gastric Cancer Cells Using DNA Methylation Markers
Liang Zhang1, Naoko Hattori1, Yuki Yoda1, Satoshi Yamashita1, Yasuyuki Seto1, Toshikazu Ushijima1 (Division of Epigenomics, National Cancer Center Research Institute, Department of Gastrointestinal Surgery, The University of Tokyo)

P-1117 High sensitivity analysis of aberrant DNA methylation by targeted deep sequencing using a benchtop sequencer
Satoshi Yamashita, Takayoshi Kishino, Reiko Nagano, Toshikazu Baba, Keisuke Kosumi, Keisuke Miyake, Kohei Kumegawa1, Reo Maruyama1, Eiichiro Yamamoto1, Naoko Hattori1, Yukie Yoda1, Satoshi Yamashita1, Takayoshi Kishino, Reiko Nagano, Toshikazu Baba, Keisuke Kosumi, Keisuke Miyake, Kohei Kumegawa1, Reo Maruyama1, Eiichiro Yamamoto1, Naoko Hattori1, Yukie Yoda1, Satoshi Yamashita1 (Division of Epigenomics, National Cancer Center Research Institute, Department of Gastrointestinal Surgery, The University of Tokyo)
DNA methylation (3)

座長：鈴木 拓（札幌医科大学・医学部医学系）

P-1128 Hypomethylation and prognostic implication of PTPRH in non-small cell lung cancer
Takashi Satu¹, Kenzo Sowjima¹, Eri Arai¹, Junko Hamamoto¹, Hirotaka Yasuda¹, Daisuke Ara¹, Kota Ishioka¹, Keiko Ohgino¹, Katsuhiko Naoki¹, Takashi Kohn², Shun-ichi Watanabe³, Yae Kanai⁴, Tomoko Betsuyaku¹
非小細胞肺癌における PTPRH の DNA 低メチル化と予後への関与

P-1129 Esophageal basoloid squamous cell carcinoma showed lower LINE-1 methylation level compared with squamous cell carcinoma.
Kenichi Nakamura¹, Yoshifumi Baba, Keisuke Kosumi, Keisuke Miyake, Kazuto Kitasato, Byuichi Karashima, Yukiharu Hiroshi, Shiro Iwagami, Yasuo Sakamoto, Yuji Miyamoto, Naoya Yoshida, Hideo Baba
食道類底細胞癌における LINE-1 メチル化レベルと臨床病理的因子の検討

P-1130 Identification of the cancer-specific CpG promoter domain DNA methylation of CDO1 in gastric cancer
Akira Ema¹, Keishi Yamashita¹, Hideki Ushiku³, Naoko Minatani, Ken Kojo, Mariko Kikuchi, Masahiko Watanabe
胃癌悪性度に関与する Cysteine dioxygenase type 1 (CDO1) 遺伝子 DNA メチル化の臨床的意義

P-1131 Genetic and epigenetic alterations of preneoplastic lesions of colorectal cancer
Eiji Sakai¹, Shotaro Umezawa¹, Shiori Uchiyama¹, Hidenori Ohkubo¹, Takuma Higurashi¹, Hiroki Endo¹, Keisuke Matsuzaka², Sayaka Funata², Kojo, Mariko Kikuchi, Masahiko Watanabe (Department of Surgery, Kansai University Medical College)
大腸前がん病変の遺伝子変異およびエピジェネティック異常の解析

P-1132 Identification of novel prognostic markers of hepatoblastoma using methylation analyses
Shohei Honda¹, Masashi Minato¹, Hiromu Suzuki¹, Masayuki Haruta¹, Yasutoshi Kaneko¹, Eiso Hiyama¹, Akitobu Taketomi¹
DNA メチル化解析による肝芽腫の新規予後予測マーカーの確立

P-1133 Identification of genes and pathways involved in DNA methylation in Hepatocellular carcinoma
Shruti Sufetia¹, Kaoru Mogushi¹, Yasen Mahmoud², Shinji Tanaka¹, Hiroshi Tanaka¹
¹(Dept. of Computational Biol., Tokyo Med. and Dent Univ., ²Dept. of path., Cancer Inst. of JFCR, ³Dept. of Hepato-biliary Pancreatic Surg., Tokyo Med. and Dent Univ.)
肝細胞がんにおける DNA メチル化に関わる遺伝子とパスウェーの同定

ソフィア ソバディア、茂樹 藤、マハムット ヤセン、田中 真二、田中 博（東京医科薬科大学システム情報学部、公財法研究会・病理部、東京医科薬科大学・肝胆膵外科）
Angiogenesis (1)

P-1134 Suppressive effects of CK2 inhibitors on the degradation of IkB and the permeability of vascular endothelial cells

Hiromi Ashino1,2, Takayuki Shindo1 (1Dept. Gastroenterological and Transplant Surgery, Hiroshima Univ.; 2Dept. Oral & Maxillofacial Surg., Seikohai Hannan Municipal Hosp.)

CK2 inhibitors suppress the expression of IkB and its degradation by proteasomes, and increase the permeability of vascular endothelial cells, and promote angiogenesis.

P-1135 Fatty liver microenvironment favors HCC progression by activating hepatic stellate cells

Yoshio Hiroki, Hirota Tashiro, Shintaro Kuroda, Tsuyoshi Kobayashi, Masakazu Hashimoto, Hideki Ohdan (Dept. Gastroenterological and Transplant Surgery, Hiroshima Univ.)

Hepatic stellate cells are activated by fatty liver microenvironments, and promote HCC progression.

NDRG1 deficiency specifically suppresses VEGF-induced angiogenesis through impaired function of endothelial cells

NDRG1 deficiency suppresses VEGF-induced angiogenesis through impaired function of endothelial cells.

P-1137 Anti-angiogenic roles of Vaso-1 and Vaso-1B

Vaso-1 and Vaso-1B have anti-angiogenic roles by inhibiting angiogenesis and endothelial cell proliferation.

P-1138 Prokinetin2 is an important factor of angiogenesis and hemangiomas formation

Hidetaka Kurebayashi, Takanori Goi, Takayuki Naruse, Youhei Kimura, Daisuke Fujimoto, Mitsuo Morikawa, Kenji Katayama, Akio Yamaguchi1 (1Dept. of Surg. Fuku Univ.)

Prokinetin2 has an important role in angiogenesis and hemangiomas formation.

P-1139 Adrenomedullin-RAMP2 system suppresses tumor metastasis through the maintenance of vascular homeostasis.

Megumu Tanaka1, Takayuki Sakurai1, Akiko Kamiyoshi1, Teruhide Koyama1, Yuko Ichikawa-Shindo1, Hisaka Kawate1, Akihiro Yamauchi1, Kyoko Igarashi1, Yuichi Torigaya1, Xian Xian2, Liu Tian2, Shunichiro Taniguchi1, Takayuki Shindo1 (1Department of Cardiovascular Research, Shinshu University Graduate School of Medicine; 2Department of Molecular Oncology, Shinshu University Graduate School of Medicine)

Adrenomedullin-RAMP2 system suppresses tumor metastasis through the maintenance of vascular homeostasis.

Angiogenesis (2)

P-1140 Intravital FRET imaging of tumor vascular endothelial cells

Intravital FRET imaging of tumor vascular endothelial cells using a novel FRET system.

P-1141 Acidic microenvironment accelerates lymph node metastasis via the functional changes of lymphatic endothelial cells

Acidic microenvironment accelerates lymph node metastasis via the functional changes of lymphatic endothelial cells.

P-1142 3D Particle Simulation on Cancer Growth and Angiogenesis: Study on Necrosis -

Katsuya Nagayama1, Sakae Saito1, Ichiro Miura1, Reiko Minamikawa-Tachinoh, Kiyoshi Ogura1 (KYUSHU institute of Technology, TOHOKU University)

3D Particle Simulation on Cancer Growth and Angiogenesis: Study on Necrosis -

P-1143 Vascular structural analysis in metastatic lymph node by micro-CT

Vascular structural analysis in metastatic lymph node by micro-CT.

P-1144 Study of vascular structure analysis in lymph node metastasis using microCT

Study of vascular structure analysis in lymph node metastasis using microCT.

P-1145 Therapeutic Effects of Hybrid Liposomes with Anti-angiogenic Activity for Breast Tumors

Hideaki Ichihara, Motoki Hino, Yoko Matsumoto, Ryuichi Ueoka1 (1Dept. of Applied Life Science, Sojo Univ.)

Therapeutic Effects of Hybrid Liposomes with Anti-angiogenic Activity for Breast Tumors.
P-1146 Vitamin D receptor knockdown suppresses growth of colorectal cancer stem-like cells

ビタミンD受容体ノックダウンは大腸がん幹細胞様細胞の成長を阻害する

P-1147 Biological properties of CD24 as a marker for epithelial-mesenchymal transition in human colorectal cancer stem cell

大腸癌幹細胞における上皮間葉移行(EMT)マーカーとしてのCD24の生物学的特性

P-1148 Role of Tie1 positive colon cancer cells in tumor growth
Miku Kitta, Daishi Yamakawa, Hiroyasu Ishidoya, Zhiyuan Gong, Nobuyuki Takakura (Dept. of Signal Transduction, RIMD, Osaka Univ.)

大腸癌におけるTie1陽性癌細胞の同定とその機能解析

P-1149 Role of proteasome activity in colorectal cancer

P-1150 Induction of cancer stem cells enriched population derived from human colon cancer cell line (SW480) by culture

P-1151 ALDH1 contributes to acquisition of resistance to paclitaxel in gastric cancer cells

ALDH1は胃がん細胞においてpaclitaxelに対する抵抗性獲得に寄与している

P-1152 Not only mTORC1 but also mTORC2 are involved in the function to maintain stem-like property of pancreatic cancer cells

mTOR複合体1および複合体2および膵臓幹細胞様性の維持に関与している。

P-1153 Susceptibility to reprogramming of pancreatic cancer stem cells

膵癌幹細胞のリプログラミングに対する感受性を持つ癌細胞

P-1154 Effects of small molecule inhibitors of the Wnt/β-catenin pathway on liver cancer stem cells

肝癌幹細胞に対するWnt/β-catenin抑制性小分子化合物の効果検討

P-1155 Significance of CD44 in the prosecution of hepatocellular carcinoma and its underlying molecular events

肝癌細胞癌における肝癌細胞マーカーCD44発現の臨床的検討とサブタイプ分類の基礎的検討

P-1156 Induced cancer stem-like sphere cells from de-differentiated human hepatocellular carcinoma cell lines

低分化型肝細胞癌細胞株から誘導した癌幹細胞様 Sphere 細胞

P-1157 Expression of Aldehyde dehydrogenase-1 (ALDH1) and its relationship with clinical parameters in lung adenocarcinoma

肺癌におけるALDH1発現と癌症度因子との関連

Chairperson: Tetsuo Takehara (Dept. of Gastroenterology & Hepatology, Osaka Univ. Grad. Sch. Med.)

Chairperson: Masaaki Oka (Yamaguchi University)
P-1158 Evaluations of Aldehyde dehydrogenase-1 (ALDH1) immunoreactivity in human lung adenocarcinoma
Tsunehiro Oyama1,2, Hitedaka Uramoto1, Shinni Shiohara1, Yoshika Nagata1, Tomoko So1, Hisao Nagaya2, Tetsuya So1, Takeaki Miyata1,2, Tashiaki Yoshimatsu1, Toshirou Osaki1, Yui Nishimatsu1.

P-1160 Cancer stem antigens as prognostic markers of breast cancer
Yasuhiro Kokubu1, Tetsuya Taga1 (Dep. of Stem Cell Regulation, Tokyo Med. and Dent. Univ.)

P-1161 Loss of microRNA-27b contributes to cancer stem cell niche for erythroid niche for cancer stem cells
Takuya Asano1,2, Yoshihiro Hirohashi1,2, Tsukasa Okuda1,2, Fumio Takeshita1, Hiroaki Miyazaki1, Makiko Nagata1,2, Junjiro Hasegawa1,2.

P-1162 Expression and characterization of the cancer/testes/stem antigen BORIS in gynecologic cancer stem cells
Takuya Asano1,2, Yoshihiro Hirohashi1,2, Tsukasu Okuda1,2, Takuami Kuroda2, Hiroko Asanuma1,2, Tsuyoshi Saito2, Noriyuki Sato3, Akiyo Yoshida1, Susumu Kohno1, Sawako Suzuki2, Shunsuke Kitajima1, Akifumi Mizutani, Hiroshi Murakami, Masaharu Seno (Grad. Sch. of Nat. Sci. & Tech., Okayama Univ.)

P-1163 Roles of cancer-derived heme in erythropoiesis: implications for erythroid niche for cancer stem cells
Wen Jiang1,2, Koutarou Tabu1, Yuichi Haga1, Shoichiro Ogura1, Tetsuya Taga2 (Dep. of Stem Cell Regulation, Tokyo Med. & Dental Univ., Grad. Sch. of Biosci. and Biotech., Tokyo Inst. of Technology)

P-1164 Novel approach for cancer stem cell research
Kouichi Tabu1, Yuichiro Hagiya2, Shun-ichiro Ogura2, Tetsuya Taga2 (Dep. of Stem Cell Regulation, Tokyo Med. & Dental Univ., Grad. Sch. of Biosci. and Biotech., Tokyo Inst. of Technology)

P-1165 Unilateral difference state induced by Rb inactivation associated with enhanced inflammatory signaling
Shunsuke Kitaizumi1, Akio Yoshihisa1, Susumu Kohno1, Sawako Suzuki1, Tomoaki Tanaka1, Noriko Gotou1, Chikai Takahashi1 (Oncology and Molecular Biology, Cancer Research Inst., Kanazawa Univ., Clinical Cell Biology, Chiba Univ., Graduate School of Medicine, Cancer Control, Cancer Research Inst., Kanazawa Univ.)

P-1166 TRIB1 supports prostate tumorigenesis and tumor-propagating cell survival
Tetsuo Mashima, Hiroshi Migita, Hiroyuki Seimiya (Cancer Chemotherapy Center, the Japanese Foundation for Cancer Research)

P-1167 Tumor derived exosomes/microvesicles convert mouse iPS cells to cancer stem-like cells
Tung Dormer12, Yuuki Obukata1, Georgio Murakami1, Masaharu Seno (Grad. Sch. of Nat. Sc. & Tech., Okayama Univ.)

P-1168 Medium

Room P(B2-2) Sep. 25 (Thu.) 17:45-18:30
P11-4 Functional molecules in cancer stem cell (2)

P11-15 Expression and characterization of the cancer/testis/stem antigen BORIS in gynecologic cancer stem cells
Takuya Asano1,2, Yoshihiro Hirohashi1,2, Tsukasu Okuda1,2, Takuami Kuroda2, Hiroko Asanuma1,2, Tsuyoshi Saito2, Noriyuki Sato3, Akiyo Yoshida1, Susumu Kohno1, Sawako Suzuki2, Shunsuke Kitajima1, Akifumi Mizutani, Hiroshi Murakami, Masaharu Seno (Grad. Sch. of Nat. Sci. & Tech., Okayama Univ.)

P11-16 Expression and characterization of cancer stem cell used in cancer stem cell therapy
Kouichi Tabu, Yuichiro Hagiya, Shun-ichiro Ogura, Tetsuya Taga (Dep. of Stem Cell Regulation, Tokyo Med. & Dental Univ.)

P11-17 Roles of cancer-derived hem in erythropoiesis implications for erythroid niche for cancer stem cells
Wen Jiang, Koutarou Tabu, Yuichi Haga, Shun-ichiro Ogura, Tetsuya Taga (Dep. of Stem Cell Regulation, Tokyo Med. & Dental Univ., Grad. Sch. of Biosci. and Biotech., Tokyo Inst. of Technology)

P11-18 Unilateral difference state induced by Rb inactivation associated with enhanced inflammatory signaling
Shunsuke Kitaizumi, Akio Yoshihisa, Susumu Kohno, Sawako Suzuki, Tomoaki Tanaka, Noriko Gotou, Chikai Takahashi (Oncology and Molecular Biology, Cancer Research Inst., Kanazawa Univ., Clinical Cell Biology, Chiba Univ., Graduate School of Medicine, Cancer Control, Cancer Research Inst., Kanazawa Univ.)

P11-19 Tumor derived exosomes/microvesicles convert mouse iPS cells to cancer stem-like cells
Tung Dormer, Yuuki Obukata, Georgio Murakami, Masaharu Seno (Grad. Sch. of Nat. Sc. & Tech., Okayama Univ.)

P11-20 Medium
P-1171 Optical imaging of cancer stem-like cells in cervical cancer

P-1172 Efficient enrichment of scirrhous gastric cancer stem cells by the adhesion character
Suharu Shibutani, Makiko Yagi, Takashi Masuko (Cell Biol Lab, Sch Pharm, Kinki Univ)

P-1173 The role of the novel long non-coding RNA in human colorectal cancer stem cell
Kosuke Matsumura, Masaya Miyamoto, Yoshiro Kawasaki, Shinshu Saito, Masaya Hiyoshi, Joji Kitayama, Tetsu Akiyama1 (Institute of Molecular and Cellular Biosciences, The University of Tokyo, Surgical Oncology, The University of Tokyo)

P-1174 Genome-wide shRNA screening by MET reporter for target discovery in breast cancer stem cell
Kiyotsugu Yoshida, Yoshiaki Matsumoto1, Hiroaki Saki1, Masahiro Shimazaki1, Nobuhiro Okada, Reinherz Ellis, Masakazu Toli1 (Lab. Malignancy Control Research, Medical Innovation Center, Kyoto Univ. Med., Dana-Farber Cancer Institute, Cancer Vaccine Center, Department of Breast Surgery, Kyoto University Graduate School of Medicine)

P-1175 Immune system-related molecule expression in cancer stem cells

P-1176 C6 glioma stem cell-derived GM-CSF induces CD11ccCD204+ protumoral macrophages.
Yasuhiro Koyokata, Kouichi Tabu1, Wenqian Wang1, Muhammad Baghdadi1, Masahisa Jinushi, Tetsuya Nagai (Dept. of stem Cell Regulation, Tokyo Med. & Dent. Univ., TDMU), Inst. for Genet. Med., Hokkaido Univ.)

P-1177 Simulated growth curve for single murine cancer stem cells after administration to syngeneic mice
Iiro Fujimoto (Hyogo Prefecture Health Promotion Association)

1個のマウス癌幹細胞の宿主における増殖曲線のシミュレーションについて
藤本 二郎 (兵庫県健康財団)

Room (3B-3) Sep. 25 (Thu.) 17:00-17:45

P11-7 Cancer stem cell (2)

P-1178 Induction of the characteristic like a colorectal cancer stem cell by CEACAM1 enhanced expression
Shunsuke Yamaguchi, sho yokoyama, lynnji leda, masaji tani, man-abu kawai, massesu tomo, shinai hayami, yoshinobu shigekawa, hiroki yamaue (2nd Dept of Surgery, Wakayama Med Sch)

CEACAM1 発現による大腸癌の癌幹細胞性格の誘導
平田 尚也，成人 夏成（和歌山県立医科大学第 2 外科）

P-1179 Effect of sphingosine-1-phosphate on cancer stem cell proliferation in glioma

Hana Hiyoshi2, Masaya Hiyoshi2, Joji Kitayama2, Tetsu Akiyama1

P-1180 Analysis of pancreatic cancer stem cells with sphere forming ability
Daisuke Hisamatsu, Ryo Okuda, Keisuke Sekine, Kaori Hamanaka, Yasuharu Ueno, Hideki Taniguchi (Regenerative Medicine Dept., Yokohama City Univ.)

スフィゾン形成能を有する肺癌幹細胞の解析
松久 大介，奥田 緋，関 栄輔，満香 香，上野 康朗，谷口 英樹（横浜市立·医·整形外科医学）

P-1181 The role of Gli2 in the regulation of leukenic stem cells

白血病の幹細胞制御におけるGli2の役割
高村 (市原) 端美．北林 一生（国立がん研・研・造血器腫瘍）

P-1182 Cancer stem cells derived from human iPS cells
Tomonori Kasai1, Akitum Mizutani2, Takayuki Kudo1, Ayano Sato1, Ying Chen1, Masaharu Seno (1Grad. Sch. Nat. Science and Technology, Okayama Univ., Deptment of Pathology, Tainjin Central Hospital of Gynecology Obstetrics)

ヒト iPS 細胞から作る癌幹細胞
笠井 智成，水野 昭文，工藤 松幸，佐藤 あゆの，陳 凌，塩尾 貞誠（岡山大学医学部 自然科学研究科，中国天津中央婦人病院）

P-1183 Aberrant gene expression in Tsc2-deficient embryonic stem cells

Tsc2欠損胚幹細胞の遺伝子発現異常
河野 竜承，伊藤 敦史，加藤 重邦，小林 謙之1，植野 幸夫，（順天堂大学 院・分子病理学病学講座，順天堂大学 医・泌尿器外科，順天堂大学 医・脳神経外科，順天堂大学 医・病理・腫瘍学）

P-1184 Telomestatin induces prolonged DNA damage response in glioma stem cells

テロメスタチンによる神経膠腫細胞の持続的 DNA 損傷応答
岡部 幸之，新家 一男，宫城 聖（がん研・化療セ・分子生物治療・産業研）
Histone deacetylaseHDAC1 contributes ABCB1-induced drug resistance in colon cancer stem cells.

The expression of CD133 associates with the resistance of cancer stem cells to stresses

Toshiaki Yoshioka1,2, Inaho Danjoh3, Ichinosuke Hyodo1,2, Gyu-Beom Jang1,2, Lalage M Wakefield3, Eun-Sook Lee4,5, Masato Abei1, Yukino Machida1,2, Masamitsu Konno1, Naohiro Takenobu3, Issay Kitabayashi6, Noriko Gotoh1,7 (1Div. Mol. Therapy, IMS, Univ. Tokyo, 2Med. Dept., Shinsyu Univ., 3Dev. Genet., IMS, Univ. Tokyo, 4Dept. Of Radiology, Graduate School of Medicine, Keio University, 5Lab. of Developmental Biology, Graduate School of Medicine, National Cancer Center, 6Med. Dept., Shinsyu Univ., 7Div. Cancer Cell Biol., Cancer Malignancy, Natl. Cancer Ctr. Res. Inst.)

Deficiency in ARTEMIS Alters Colon Cancer Stem Cell Markers and Enhances Its Radiosensitivity

Shinji Goto1,2, Jun Koseki2, Kazuhito Itamoto4, Koichi Kawamoto3, Taroh Nishida1, Jun Koseki2, Kazuhiro Noma1, Hiroshi Tazawa1, Shunsuke Kagawa1,2, Kanji Katayama2, Akio Yamaguchi3, Toshihiko Kamiyama1 (11st Dept. of Surgery, Univ. of Occupational and Environmental Health, 2Dept. of Molecular Medicine, Chiba Cancer Ctr. Res. Inst., 3Div. of Molecular Genetics, Chiba Cancer Ctr. Res. Inst., 4Dept. of Gastroenterological Surg., Osaka Univ.)

Deficiency in ARTEMIS Alters Colon Cancer Stem Cell Markers and Enhances Its Radiosensitivity

Takaaki Koga2, Ikuo Hori1, Koichiro Ogasawara1, Toru Nakayama1,2, Shunsuke Kagawa1,2, Akifumi Mitsuuchi3,4, Tomonari Kasai5, Masaharu Sono6, Toshiyoshi Fujwara7, Hiroshi Tazawa1, Shunsuke Kagawa1,2 (1Lab. Cancer Biology and Genetics, National Cancer Institute, 2Research Institute and Hospital, National Cancer Center, 3W Pharmaceutical, 2477 Nambusunhwan-ro, Seocho-gu, Seoul, South Korea.)

Regulation, Advanced Medical Research, School of Medicine, Keio University

Deficiency in ARTEMIS Alters Colon Cancer Stem Cell Markers and Enhances Its Radiosensitivity

Deficiency in ARTEMIS Alters Colon Cancer Stem Cell Markers and Enhances Its Radiosensitivity

Jung Hyuck Park5, Chi-Ho Yun5, Jae-Uk Chung5, Kyoung-June Lee5, Jeong-Seok Nam1,2 (1Lee Gil Ya Cancer and Diabetes Institute, Fukui, 2Cancer care promotion center, Univ. of Fukui)

Maintenance of stemness of breast cancer stem-like cells by FGF2beta, a feedback inhibitor for HER

Maintenance of stemness of breast cancer stem-like cells by FGF2beta, a feedback inhibitor for HER

Maintenance of stemness of breast cancer stem-like cells by FRS2beta, a feedback inhibitor for HER

ロールの役割

P-1198 Role of mTORC1 in the regulation of energy metabolism of glioma initiating cells
Masahiko Kobayashi, Daisuke Yamada, Atsushi Hirao (Cancer Res. Inst., Kanazawa Univ.)

P-1199 Rules of histamine on the expression of aldehyde dehydrogenase in endometrioid adenocarcinoma cell line

P-1200 Functional analyses of cell polarity regulator Crb3 in tumor progression

12 Cancer immunity

P12-1 Combination cancer immunotherapy
Chairperson: Koji Tamada (Dept of Immunology, Yamaguchi Univ Grad Sch of Med)

座長：玉田 耕治（山口大学大学院・医学系研究科・免疫学）

P-1201 Combinatorial immunotherapy of poly-IC and anti-PD-L1 antibody induce effective CDB T-cell responses against tumors

P-1202 Enhancement of a p53-based cancer vaccine by heterologous prime/boost immunization and toll-like receptors stimulation
Hidenobu Ishizaki, Ellenhorn Joshua, Kazuhiro Kondo (1Dept. Surgery, 2Myazaki Univ. Sch. Med., 3City of Hope National Medical Center)

P-1203 Strategies and implications for prime-boost vaccination using artificial adjuvant vector cell (aAVC)
Kanako Shimizu, Yusuke Sato, Satoru Yamashita, Jun Shinga, Shin-ichiro Fujii (Lab. Immunother., RIKEN-IMS)

NKTリガントと抗原を共発現した人工アジュベントベクター細胞ワクチンのプリーフードブーストの検討
清水 佳奈子, 佐藤 芳穂, 山崎 哲, 信倉 順, 藤井 眞一郎 (理研・統合生命・免疫細胞治療研究チーム)

P-1204 Kinetics of Treg cells in oncolytic virus HF10-based in situ vaccination combined with anti-mouse GITR mAb

腫瘍溶解型ウイルスHF10と抗マウスGITR抗体を用いたin situ vaccinationでのTreg細胞の動態
渋谷 尚宏, 石原 幹也, 岡村 大輝, 田中 舞紀, 峰野 純一, 池田 裕明, 瀬戸 洋 (三重大・医・遺伝子・免疫細胞治療研究室, 2タカラバイオ (株))

P-1205 The enhancement of the CTL induction by peptide vaccine therapy in combination with anti-CD4 antibody
Takafumi Nakamura, Nohiro Fujii (Lab. Immunother., EPOC, Natl. Cancer Ctr.)

抗CD4抗体の併用投与は抗腫瘍ペプチドワクチン療法のCTLブラインド効率を高める
藤波 祐洋, 吉川 明和, 濱田 雄, 下村 真菜, 岩間 達章, 楠村 靖美, 中村 哲也 (東京理科大・生命医科学研究所, 2Cancer Res. Inst. for Biomed. Sci., Tokyo)
P12-2

Induction of tumor antigen specific T-cells

Chairperson: Kiyotaka Kuzushima (Dept. Immunol., Aichi Cancer Center Res. Inst.)

座長: 藤巻 慎一郎（愛知県がんセンターリsearch 研究所・腫瘍免疫学部）

P12-07

Induction of anti-tumor CTL responses targeting eukaryotic tumor antigens

Hiroko Nakajima, Yuseke Ojji, Yui Murakami, Ichiro Morigi, Toshinori Aka, Satoko Oda, Naoa Tatsunami, Mari Fukuda, Takao Machitani, Mikio Inoue, Naomichi Hori, Hiroshi Oka, Haruo Sugiyama

P12-08

Identification of the natural antigenic peptide derived from FAM83B that is specifically expressed in cancer stem cells

Shi Miyamoto, Takayuki Kaniakai, Koki Kakinoki, Kochi Vitali, Yoshiki Hirohashi, Toshio Torigoe, Hiroshi Hirasaka, Noriyuki Sato

(Dept. Department of Pathology, Sapporo Medical University School of Medicine, Division of Oral Surgery, Sapporo Medical University School of Medicine)

P12-09

Combinatorial contextualization of peptidic epitopes for enhanced cellular immunity

Masaki Ito, Kazumi Hayashi, Tomoko Minamisawa, Miki Iwai, Naoko Hojo, Yoshihiro Oka, Haruo Sugiyama

(Dept. Department of Pathology, Sapporo Medical University School of Medicine, Division of Oral Surgery, Sapporo Medical University School of Medicine)

P12-10

The strategy of Cancer vaccine therapy using genetically modified iPSDCs expressing TAA gene

Hiromitsu Iwamoto, Toshiko Osjima, Junya Kitadai, Keiji Hayata, Masahiro Katsuda, Motoki Miyazawa, Masaki Nakamura, Mikihiro Nakamori, Hiroki Yamae (Second Department of Surgery, Wakayama Medical University)

P12-11

Peptide-pulsed DC vaccine has the potential to reduce HTLV-1 proviral load via restoration of specific CTL responses

Satomi Ando, Atsuhiko Hasegawa, Yuji Murakami, Yasuhiro Maeda, Takao Masuda, Mari Kannagi

P12-12

Regulation of antitumor immune responses through differentiation and mobilization of hematopoietic stem cells by IL-27

Yukino Chiba, Izuru Mizoguchi, Masayuki Hisada, Akihiko Tsuda, Junichiro Mizuguchi, Takayuki Yoshimoto

P12-13

The AHR-IAX axis regulates differentiation and maturation in bone marrow-derived dendritic cells

SHHI BO HUANG, Shih-Hsien Hsu, Shyh-Shin Chiou

(Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Division of Hematology-Oncoology, Department of Pediatrics, KEMU)

P12-14

TLR2 signal enhances survival and immune-suppressive activity of MDSCs

Akira Maruyama, Hiroshi Shime, Masako Matsumoto, Tsukasa Seya

P12-15

IL-6 impairs ability of dendritic cells for inducing T1 cells to tumor microenvironment

Yosuke Ohno, Hidenobu Kitamura, Ohkata Junya, Shun Kanemui, Satoshi Terada, Kentaro Sumida, Yoshiyuki Kita, Norihiko Takahashi, Akihiko Takeuchi

P12-16

Activation of dendritic cells by neuropeptide signaling through NK1R and NK2R in neurogenic inflammation

Shun Kanemui, Junya Ohno, Kentaro Sumida, Satoshi Terada, Takuto Kishikawa, Yoshiyuki Kita, Hironobu Kajiyama, Hideyuki Kitamura

P12-17

Changes in the anti-tumor immune response by controlling hypothalamic POMC neuron activity using optogenetic techniques

Daigo Ikegami, Yoshihiko Tasaki, Masami Suzuki, Yasuhiro Uezono, Kazunori Aoki, Minoru Narita

P12-18

Induction of tumor antigen specific T-cells

Chairperson: Hideo Yagiata (Dept. Immunol., Juntendo Univ. Sch. Med.)

座長：八木田 秀雄（順天堂大・医）
P-1218

Indoleamine 2,3-dioxigenase Activity During Chemotherapy or Hormone Therapy in Patients with Breast Cancer

Kenichiro Sakurai, Shuhei Suzuki, Sakgi Nagashima, Yukiko Hara, Katsushi Enomoto, Sadoa Amano (Dept. Breast and Endocrine Surgery, Nihon Univ., Sch Med)

Abstract

To evaluate the indoleamine 2,3-dioxygenase (IDO) activity in patients with breast cancer treated with chemotherapy or hormone therapy, we examined the IDO mRNA expression in tumor tissue samples before and after treatment. The mRNA expression was analyzed using reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time PCR. The results showed that the IDO mRNA expression was upregulated in the majority of tumors before treatment, but was downregulated in a significant number of tumors after treatment. This study suggests that IDO activity may be a useful biomarker for predicting the response to chemotherapy or hormone therapy in patients with breast cancer.

P-1219

Study of myeloid-derived suppressor cells in head and neck tumor patients

Abstract

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immune cells that suppress immune responses and may contribute to tumor progression. In this study, we aimed to characterize the MDSCs in head and neck tumor patients and their potential role in tumor progression. We used flow cytometry to analyze the frequency of MDSCs in peripheral blood and tumor tissue samples from head and neck tumor patients. The results showed that MDSCs were increased in the peripheral blood and tumor tissue samples of head and neck tumor patients compared to healthy controls. These findings suggest that MDSCs may play a role in tumor progression and could be a therapeutic target for head and neck tumor patients.

P-1220

Analysis of glypican-3 specific CTLs in the tumor tissue and vaccination site after administration of GPC3 peptide

Abstract

Glypican-3 (GPC3) is a tumor-specific antigen expressed in various tumors, including liver cancer and melanoma. In this study, we aimed to evaluate the immunotherapeutic benefit of using GPC3 peptide-based immunotherapy in patients with tumors expressing GPC3. We used flow cytometry and ELISA to analyze the frequency of GPC3-specific cytotoxic T lymphocytes (CTLs) in tumor tissue samples and vaccination sites after administration of GPC3 peptide. The results showed that the frequency of GPC3-specific CTLs was increased in the vaccination site after administration of GPC3 peptide compared to the tumor tissue. These findings suggest that GPC3 peptide-based immunotherapy may be a promising approach for the treatment of GPC3-expressing tumors.

P-1221

Monitoring multifunctional activity of exhausted CD8 T-cells in cancer patients

Abstract

Exhausted CD8 T-cells (exCD8 T-cells) are a subset of CD8 T-cells that are functionally diminished and are often found in cancer patients. The safety and efficacy of immunotherapy for cancer patients is often limited by the presence of exCD8 T-cells. In this study, we aimed to evaluate the multifunctional activity of exCD8 T-cells in cancer patients and its potential role in the response to immunotherapy. We used flow cytometry and ELISA to analyze the functional activity of exCD8 T-cells in cancer patients before and after immunotherapy. The results showed that the functional activity of exCD8 T-cells was decreased in cancer patients before immunotherapy and was increased after immunotherapy. These findings suggest that the functional activity of exCD8 T-cells may be a useful biomarker for predicting the response to immunotherapy in cancer patients.

P-1222

Application of serum microRNA as a novel biomarker for evaluation of anti-tumor immune responses in cancer immunotherapy

Abstract

MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression and are involved in various biological processes. In this study, we aimed to evaluate the miRNA expression in serum samples from cancer patients treated with immunotherapy and its potential role in the evaluation of anti-tumor immune responses. We used high-throughput sequencing to analyze the miRNA expression in serum samples from cancer patients before and after immunotherapy. The results showed that the miRNA expression was altered in serum samples from cancer patients before and after immunotherapy. These findings suggest that serum miRNA expression may be a useful biomarker for evaluating anti-tumor immune responses in cancer immunotherapy.
Room P(B4-3) Sep. 25 (Thu.) 17:45-18:30

P12-7 Tumor antigen 腫瘍抗原

Chairperson: Hiroyuki Kishi (Dept. Immunol., Grad. Sch. Med. Pharm. Sci., Univ. Toyama)

座長: 岸 裕幸（富山大学・院薬・免疫学）

座長: 岸 裕幸（富山大学・院薬・免疫学）

P12-23 Immune response to tumor antigen, RAα, in patients with gastrointestinal cancers.

消化管癌患者におけるRAα抗原に対する免疫応答

島田 賢悟, 島田 聡, 小野 弘一, 松下 一之, 野村 文夫, 日和 佐 薫樹, 田川 雅敏 (東邦大・医, 一般消化器外科, 1000-大東・医, 院薬, 外科) allisson 1, 2, 3, 野村 文夫, 日和 佐 薫樹, 田川 雅敏 (東邦大・医, 一般消化器外科, 1000-大東・医, 院薬, 外科) allisson 1, 2, 3, 野村 文夫, 日和 佐 薫樹, 田川 雅敏 (東邦大・医, 一般消化器外科, 1000-大東・医, 院薬, 外科) allisson 1, 2, 3
P-1240 Nafamostat Mesylate suppresses GEM-induced PD-L1 upregulation of pancreatic cancer cells

Nafamostat Mesylate is a gemcitabine-resistant effector cell and its induction (2)

Room C(1-1) Sep. 25 (Thu.) 17:00-17:45

P12-9 Antitumor effector cell and its induction (2)
抗腫瘍エフェクター細胞とその誘導 (2)
Chairperson: Tomohisa Baba (Cancer Res. Inst., Kanazawa Univ.)
座長：馬場 智久 (金沢大．がん研)

P-1243 Generation of BCR-ABL reactive CD4 T lymphocytes by reprogramming and redifferentiation
Norihiro Ueda*, Yasushi Uemura, Rong Zhang, Tianyi Liu, Minako Tatsumi, Yutaka Yasui, Kiyotaka Kuzushima, hitoshi Kiyoi, Shin Kaneko (Center of iPS cell Research and Application Kyoto Univ., Univ of Tokyo Department of Obstetrics and Gynecology)

ゲノム編集IPSC細胞を利用した抗腫瘍細胞免疫療法の開発
川村 浩隆, 垣田 秋津, 岩村 彰一, 金子 新 (京都大学 iPS細胞研究所, 東京医科薬科大学）

P-1244 The combination of LEM with gemcitabine exerts synergistic antitumor effect through reducing Tregs and MDSCs
Satoru Ishikawa, Satoshi Wachi, Yasunori Matsui, Hiroshi Yamaguchi, Mamoru Harada (Department of Immunology Shimane University Faculty of Medicine, Central R&D Laboratory KOBAYASHI Pharmaceutical Co., Ltd.)

シタケ菌種体抽出物とgemcitabineの併用がTregとMDSCを抑制することで相補的な抗腫瘍効果を発揮する
石川 光樹, 岩田 哲也, 松井 公人, 博村 博, 原田 守 (鳥取大．医・免疫学, 小林製薬・中央研究所・研究開発部)

P-1245 Critical roles of chemo-resistant effector and regulatory T cells in antitumor immunity after cytotoxic therapy
Ko Sato, Satoshi Watanabe, Yu Saída, Junko Baba, Rie Kondo, Tomohiro Tanaka, Satoshi Shoji, Masaki Okajima, Satoru Miura, Junta Tanaka, Hiroshi Kagami, Hirohisa Yoshizawa, Ichie Narita (Department of Medicine (II), Niigata University Medical and Dental Hospital, Bioscience Medical Research Center, Niigata University Medical and Dental Hospital)

化学療法抵抗性のエフェクターCD8 T細胞, CD4+CD25+Foxp3+抑制性T細胞は化学療法後の抗腫瘍免疫応答に重要な役割を果す
佐藤 元, 渡部 智, 才田 優, 馬場 真子, 近藤 慧利, 田中 知弘, 山本 正明, 三浦 泰, 田中 純太, 向井 眞, 吉沢 求弘, 忍住 一衛 (新潟大学医学部薬学総合病院・第二内科, 新潟大学医学部総合病院・治験センター)

P-1246 A robust and selective expansion method for functional NK cells and its application to in vitro ADCC evaluation system
Akiko Kato, Mitsuko Ideno, Tatsuiju Enoki, Naoyuki Sakamoto, Takashi Ishikawa, Tetsuya Okayama, Satoshi Kokua, Yuji Naito (Center of Medical Gastroenterology & Hepatology, Kyoto Pref. Univ. Med., Dept. of Gastroenterology and Immunology, Kyoto Pref. Univ. Med., 'Iseikai Hyakumanben Clinic, 'Center for Educational Research and Development, Kyoto Gakuen Univ.)

高純度かつ高機能性NK細胞の培養法とin vitro ADCC活性評価への応用
加藤 彰人, 出野 美津子, 櫻 龍悟, 坂元 勝行, 石川 章, 岡山 哲也, 古倉 聡, 北村 正成, 峯谷 雅之 (大阪パラバイオ株) CDMS センター, 京都府立医科大学 がん免疫細胞制御学講座, 京都圣会 百万倉クリニック, 京都学園大学 教育開発センター）

CTLA-4 阻害薬は分化型よりも未分化型 T 細胞を用いた患者免疫療法との併用においてより高い効率を発揮する
石川 勝, 定足 聡人, 岡山 哲也, 湯浅 佳文, 土井 俊文, 坂元 勝, 渡部 智, 松井 公人, 岡村 彰一, 金子 新 (京都府立医科大学 消化内科, 京都府立医科大学 がん免疫細胞制御学講座, 京都圣会 百万倉クリニック, 京都学園大学 教育開発センター）

P-1250 Metformin induced tumor infiltrating CD8 T-cells with effector memory phenotype and multi-functional reversion

メトホルミンは腫瘍浸潤CD8T細胞においてエフェクターメモリーハイブリッド細胞を誘導し、多機能性へと変化する
柴川 伸吾, 藤原 真実, 国定 勝喜, 上原 勝, 柳 折, 山崎 千尋, 鶴見 平郎 (岡山大・免疫学, 岡山大・歯転移皮膚外, 岡山大・医, 整形外科)
P-1251 Generation of HLA class-I restricted TCR-gene modified CD4+ T-cell subtype for antileukemia adoptive immunotherapy
Hiroaki Asai, Hiroshi Fujisawa, Fumihito Ochi, Toshiaki Ohki, Sachiko Okamoto, Junichi Mineno, Kiyotaka Kuzushima, Hiroshi Shikura, Masaki Yasukawa, Yono Arai, Akifumi Hatakeyama, Yoko Ueda, Masatoshi Tagawa, Kei Hasegawa, Muneo Hasegawa, Tetsuya Uchida, Manami Shimomura, Sachiko Okamoto, Yasushi Akahori, Yoshihiro Day

Day 1 Information Day 2 Day 3

Chairperson: Takaaki Kamei, Hiroshi Terunuma

Day 2

P-1258 Development of an adoptive immunotherapy using CD8+ T-cells transduced with mRNA encoding VEGFR2-specific CAR
Ryo Inagaki, Naoki Okada, Masato Muto, Ryutaro Maekawa, Takashi Kamigaki, Sachiko Hirobe, Shiinsaku Nakagawa

P-1259 Evaluation of peptide-specific CTL-inducible ability of glypican-3-derived peptide-coupled liposome vaccine
Tatsuki IWAMA, Tetsuya UCHIDA, Manami SHIMOMURA, Yoshihiro Yoshitake, Hidena Og, Hideki Nukayama, Akimitsu Kamakura, Takuya Tsunoda, Yuta Akiyama, Naoko Nakamura, Yasuharu Nishimura, Masanori Shinohara

P-1260 Effect of Cigarette Smoke Exposure on Anti-tumor activity of distinct effector cells
Kazuhito Miyahara, Hiroaki Ikeda, Yoshikazu Kurosawa, Hiroshi Shiku, Junichi Mineno

P-1261 Analysis of nonspecific activation of CAR-gene modified T cell
Yasunori Amashita, Sachiko Okamoto, Yasuhiro Akahori, Yoshitaka Miyahara, Hiroaki Ikeda, Yoshikazu Kurosawa, Hiroshi Shiku, Junichi Mineno

P-1262 Antitumor effector cell and its induction (4)
Hidemitsu Kitamura

P-1263 Development of expansion culture to generate tumor-specific cytokine T cells using iPSC technology
Yoshie Kawahashi

P-1264 Antitumor effector cell and its induction (4)
Koichi Nagaoka, Takayuki Yoshimoto, Takashi Kamigaki

P-1265 IL-17A inhibits tumor metastasis using organ-specific distinct effector cells
Kohei Nishiyama, Masatoshi Tagawa, Kei Hasegawa, Muneo Namasaki

P-1266 Alteration of CD4 T cell subsets in metastatic lymph nodes of human gastric cancer
Hiroaki Tanaka, Yoshihiro Okita, Mao Tokumoto, Yukie Go, Kenjiro Akahori, Hisashi Nagahara, Katsunobu Sakurai, Ryohei Oda, Naoki Ikeda, Yoshitaka Kamikita, Makoto Shiku, Yukio Saito, Kazuhiko Kanaya, Takuma Kanzaki

P-1267 Generation of HLA class-I restricted TCR-gene modified CD4+ T-cell subtype for antileukemia adoptive immunotherapy
Hiroaki Asai, Hiroshi Fujisawa, Fumihito Ochi, Toshiaki Ohki, Sachiko Okamoto, Junichi Mineno, Kiyotaka Kuzushima, Hiroshi Shikura, Masaki Yasukawa, Yono Arai, Akifumi Hatakeyama, Yoko Ueda, Masatoshi Tagawa, Kei Hasegawa, Muneo Hasegawa, Tetsuya Uchida, Manami Shimomura, Sachiko Okamoto, Yasushi Akahori, Yoshihiro Day
P-1263 A Phase I Clinical Trial of Immune Cell Therapy Combined with Cyclophosphamide for Patients with Advanced Solid Tumors
Yasuhi Jhihikata1, Toshiohiko Okazaki2, Kazunari Yamaoda1, Koji Yoshida1, Hirohiko Inoue1, Sonoko Ishihara3, Kansaburo Tan11, (1Dept of Advanced Molecular and Cell Therapy, Kyushu Univ. Hosp., 2OncoTherapy Science, Inc., 3Medical Inst of Bioregulation, Kyoto Univ.)

進行期食道癌患者に対するシクロフスファミド併用免疫細胞療法第Ⅰ相臨床研究
土方康基1、岡崎 利彦1、山田 一成3、吉田 浩二1、井上 博之3、石原 優子1、谷 薫可1、楠原 元1（九州大学病院 先端分子・細胞治療科、2オンコセラピー サイエンス株式会社、3九州大学 生体防御医学研究所）

P-1264 EFFICACY AND SAFETY OF T CELLS WITH CEA-SPECIFIC CHIMERIC ANTIGEN RECEPTOR FOR CANCER IMMUNOTHERAPY

癌免疫性抗原特異的キメラ抗原受容体導入T細胞輸注療法の有効性と安全性の検討
王 林楠1、加藤 琢磨2、潮尾 尚宏2、岡本 幸子3、天石 泰典1、養野 純1、竹迫 一任4、樋口 洋1（三重大・医・遺伝子免疫細胞治療学、2三重大・医・生体防御医学、3タカラバイオ（株））

P-1266 Lysine-specific demethylase 1 is associated with invasion and glucose intake in esophageal cancer cell lines
Keisuke Kosumi1, Yoshifumi Baba1, Kazuto Harada1, Ryuichi Karashima2, Yukiharu Hiyoshi2, Shiro Iwagami1, Yasuo Sakamoto1, Yuji Miyamoto1, Naoya Yoshida2, Akihisa Sakamoto3, Shinjiro Hino1, Mitsuyoshi Naka1, Hideo Baba1 (1Dept. of Gastroenterological Surg., Kumamoto Univ., 2Dept. of Gastroenterology, Teine-Keijinkai Hospital, 3Department of Gastroenterology, Teine-Keijinkai Hospital)

食道癌細胞株におけるLysine-specific demethylase 1の発現意義
小泉 敬祐1、馬場 祥史1、原田 和人1、寺尾 広一1、日吉 晴晴2、岩本 志紀3、坂本 俊郎1、坂本 喜久2、日野 信次郎3、中尾 光彦3、馬場 秀夫3（熊本大学大学院 消化器外科、巴本大学発生医学研究所 細胞医学分野）

P-1267 Integrated Analysis of Genetic and Epigenetic Alterations in Esophageal Squamous Cell Carcinoma
Takayoshi Kishino1, Tohru Niwa1, Satoshi Yashima1, Takasaka Takahashi1, Toshikazu Ushijima (Division of Epigenomics, National Cancer Center Research Institute)

食道扁平上皮癌におけるゲノムおよびエピジェニックの統合解析
西島隆之1、田中知也1、中山 奈津2、下木 慎3、高橋 康彦3、土原 悠香1（国立がん研究センター研究所）

P-1268 PAR-3 suppresses the Hippo pathway and activates the AKT/mTOR pathway in esophageal squamous cell carcinoma.

食道癌におけるPAR-3によるHippo経路の抑制およびAKT/mTOR経路の活性化
北村智子1、安藤 幸一1、富美江1、土肥 純1、玄 泰行1、内藤 裕2、伊藤 豊3（京都市立大学 医学部消化器内科）

P-1269 Elucidation of core molecular pathways characterizing chemoradiotherapy-resistant subtypes of esophageal cancers
Masayuki Komatsu1, Kazuhiko Aoyagi1, Keiko Minashi1, Kazuhihiro Yasui1, Hirohiti Kojima2, Tomonori Yano1, Masahiro Tamaoki1, Koji Yoshida1, Fumiko Chisaki1, Atsushi Ohtsu1, Teruhiko Yoshida1, Manabu Muto3, Hiroki Sasaki1 (1Dept. of Oncology, Natl. Cancer Res. Ctr. Inst., 2Clinical Trial Promotion Dep., Chiba Cancer Center, 3Endoscopy Dep., Hospital East, Natl. Cancer Ctr., 4EPOC., Natl. Cancer Ctr., 5Div. of Genetics, Natl. Cancer Ctr. Res. Inst., 6Therapeutic Oncology Dep., Kyoto Univ)

食道がんの化学療法・放射線療法抵抗性サブタイプに特徴的な分子経路の解明
小松 将之1、青柳 和彦1、三川 桂子1、小島 隆嗣1、矢野 友貴2、玉置 拓司3、小松崎 理絵1、千葉 正史1、大津 数1、吉田 輝彦2、武藤 孝3、佐々木 博1（国立がん研究センター 研究 パイオマークセンター、2千葉県がんセンター 臨床試験推進部、3国立がん研究センター 東部 内科、4国立がん研究センター 早期探索臨床研究部、5国立がん研究センター 研究 遺伝医学、京大・院 - 医研 - 耳鼻咽喉科治療）
Identification of tumor suppressor gene SIM2 associated with chemoradiotherapy sensitivity in esophageal cancer
Masashi Tamaoki¹, Kazuhiko Aoyagi², Keiko Minashi³, Takashi Kojima⁴, Tomomori Yano⁵, Rie Komatsu-six⁶, Fumiko Chiyaki⁷, Atsushi Ohtsu⁸, Teruhiko Yoshida⁵, Manabu Muto⁹, Hiroki Sasaki¹⁰ (¹Dep. of Translational Oncol, Natl. Cancer Ctr. Res. Inst., ¹¹Clinical Trial Promotion Dep., Chiba Cancer Center, ¹²Endoscopy Dep., Hospital East, Natl. Cancer Ctr., ¹³EPOC, Natl. Cancer Ctr., ¹⁴Div. of Genetics, Natl. Cancer Ctr. Res. Inst., ¹⁵Therapeutic Oncology Dep., Kyoto Univ.)

DAY 1 INFORMATION

CYP26C1 gene is highly methylated and correlated with chemotherapeutic therapy in esophageal squamous cell carcinoma
Yoshitaka Watanabe¹, Ritsuko Oikawa¹, Yoshihito Yoshida², Hiroyuki Yamamoto³, Fumio Itou³ (³Div. Gastroenterol. and Hepatol., St. Marianna Univ. Sch. of Med., ⁴Dept. of Internal Med., Kawasaki Rinko General Hosp.)

Infiltrating macrophages may promote early esophageal carcinogenesis via p38 MAP kinase cascade

ESOPHAGEAL CARCINOMA

A phase I/II study of low-dose DCF for patients with recurrent or metastatic squamous cell carcinoma of esophagus
Toshiyasu Ojima¹, Mikihiko Nakamori, Masaki Nakamura, Makoto Iwashashi, Masahiro Katsuda, Keiji Hayata, Shuichi Matsumura, Tomoya Kato, Junya Kitadani, Hiroshi Yamaue (²Dept. Surg., Wakayama Medical University)

“FIRST” PRESENTATIONS

Clinical pathological significance of GDF15 in the microenvironment of human esophageal squamous cell carcinoma

125
P-1282 Tumor associated macrophage-derived GDF15 induces phosphorylation of Akt and Erk in esophageal squamous cell carcinoma

P-1283 ALDH is a useful marker of stem cells in esophageal squamous cell carcinoma

Kentaro Murakami, Isshino Hoshino, Yasunori Akutsu, Takanori Urological tumor (1)

P-1284 The 100 cell-line project of common cancers in Asia for basic and applied oncology (esophageal cancer panel)

P-1285 The impact of regenerating islet-derived related protein 4 in human pancreatic cancer resistant prostate cancer cell lines

Jun Teishima1, Koichi Shoji1, Ryoken Yamanaka1, Keisuke Goto1, Hirohiko Naganatsu1, Shinya Obara1, Tetsutarou Hayashi1, Kiyotaka Oka1, Naohide Oue1, Wataru Yasui1, Akio Matsubara1, Hiroshi Hudson, University Natl. Univ. (1Dept. Urol., 2Dept. Path., 3Dept. Med., 4Dept. Path.)

P-1286 Chemoresistant prostate cancer cells increase the tumorigenicity via constitutive signaling of CXCR4, ERK1/2 and c-Myc

Norihiko Kawamoto1, Koji Hatano1, Toshiro Kinouchi1, Takashi Hayasaka1, Kyojusuke Matsuaki1, Wataru Nakata1, Takahiro Yoshida1, Takeshi Ujike1, Akira Nagahara1, Kazuhiro Fujitani1, Mototada Uemura1, Yasufumi Kaneda1, Norio Nomoroma2 (1Dept. Urol., 2Ohsaka Univ., Sch. Med., 3Johns Hopkins University, Gene Therap. Sci., Ohsaka Univ., Sch. Med)

P-1287 Antisense Oligonucleotides Targeting AR and its Variants Suppress Enzalutamide Resistant Prostate Cancer Cell Growth Yoshio Yamamoto1 (1The Vancouver Prostate Centre, 2Dept. Uro., Yamaguchi Univ., Sch.)

Enzalutamide 耐性是永久性的 against Androgen Receptor とその Variants をターゲットとして Antisense Oligonucleotides を用いた治療

山本 裕明1,2 (1The Vancouver Prostate Centre, 2山口大学・泌尿器科学)

P-1288 Combined effect of carboxylated magnetic nanoparticles and doxetaxel on prostate cancer cells

P-1290 Effects of magnetic nanoparticles on doxorubicin-based chemotherapy in prostate cancer cells

Sou Yamaguchi1, Satoshi Hashimoto1, Nao Furuta1, Ayumi Iwasaki1, Daiki Okamoto1, Emi Fukai1, Daisuke Kuroki1, Tadashi Nittami1, Masatoshi Watanabe1 (1Med. Eng., Grad. Sch. Eng., Yokohama Natl.Univ., 2College of Eng.Sci., Yokohama Natl.Univ.)

P-1291 5-aminolevulinic acid-mediated photodynamic therapy for prostate cancer

Hideo Fukuhara1, Kieji Inoue1, Shifu Wei1, Taro Shuin1 (Kochi Medical School, Department of Urology)

P-1292 Overexpression of ADAMTS1 is associated with gemcitabine/cisplatin resistance in urothelial carcinoma of the bladder

Naotaka Nishiyama, Hiroshi Kitamura, Ryuta Inoue, Sachiko Nishida, Megumi Hirobe, Satoshi Takanashi, Naoya Masumura1, Daisuke Kuroki1, Naoko Sato, Sapporo Med. Univ.

P-1293 Systemic transduction of p16(ink4A) anti-tumor peptide inhibits lung metastasis of MBT-2 bladder tumor cell line in mice

p16(ink4A) 有效抑制性ペプチドの全身投与はマウスにおけるMBT-2膀胱癌細胞の転移を抑制する

Table: p16(ink4A) 作用機序

Table: Systemic transduction of p16(ink4A) anti-tumor peptide inhibits lung metastasis of MBT-2 bladder tumor cell line in mice

P-1293 Neuregulin 1 HRG-beta1 plays a critical role in cell survival of urothelial carcinoma cancer stem-like cells

Neuregulin 1 HRG-beta1 is a tumor-associated marker that promotes cell survival in urothelial carcinoma cancer stem-like cells.

P-1294 Acquired platinum resistance involves epithelial-to-mesenchymal transition in urothelial carcinoma
Nobuyuki Tanaka, Takeo Kosaka, Yasumasa Miyazaki, Ryoichi Mizuno, Yoshitake Ito, Mototsugu Oya (Dept. Urol., Keio Univ., Sch. Med.)

Acquired platinum resistance in urothelial carcinoma involves epithelial-to-mesenchymal transition.

P-1295 Effect of ATPase inhibitor factor 1 on bladder cancer
Shiuu Wei, Hideo Fukuhara, Keiji Inoue, Taro Shuin (Dept. Urol., Kochi Med. Sch.)

ATPase inhibitor factor 1 may have a role in bladder cancer.

P-1296 4E-Binding Protein 1:A key molecule in invasive bladder cancer with clinical implications
Masatomo Nishikawa, Junya Furukawa, Ken-ichi Harada, Nobuyuki Tanaka, Mikami2, Mototsugu Oya 1 (1Keio University, Department of Urology, Tokyo, Japan; 2Division of Pathology, National Cancer Center Research Institute, Tokyo, Japan)

4E-Binding Protein 1 is a key molecule in invasive bladder cancer.

P-1297 HIF-1 alpha expression in non-muscle invasive urothelial carcinoma of the bladder and its association with EMT markers
Mototsugu Muramaki, Ken-ichi Harada, Junya Furukawa, Hideaki Miyake, Masato Fujisawa (Division of Urology, Kobe Univ. Grad. School of Med.)

HIF-1 alpha expression in non-muscle invasive urothelial carcinoma of the bladder is associated with epithelial-mesenchymal transition markers.

P-1298 Axl is a novel prognostic marker in upper urinary tract urothelial carcinoma.
Seiwa Hattori, Eiji Kikuchi, Takeo Kosaka, Akira Miyajima, Shuji Mikami, Mototsugu Oya (Kochi University, Department of Urology, Kochi University, Division of Diagnostic Pathology)

Axl is a novel prognostic marker in upper urinary tract urothelial carcinoma.

P-1299 Expression profile of EMT-associated markers in non-muscle invasive urothelial carcinoma of the bladder
Hideaki Miyake, Junya Furukawa, Ken-ichi Harada, Mototsugu Muramaki, Masato Fujisawa (Div. Urol., Kobe Univ. Graduate School of Med.)

Expression profile of EMT-associated markers in non-muscle invasive urothelial carcinoma of the bladder.

P-1300 Low circulating serum levels of second mitochondria-derived activator of caspase in patients with bladder cancer

Low circulating serum levels of second mitochondria-derived activator of caspase are associated with bladder cancer.

P-1301 The amplification of CCND1 in urothelial carcinoma of the bladder revealed by fluorescence in situ hybridization

The amplification of CCND1 in urothelial carcinoma of the bladder was revealed by fluorescence in situ hybridization.

P-1302 Expression level of p62 protein in invasive bladder cancer as a prognostic predictor
Junya Furukawa, Masafumi Kumanoto, Akira Miyazaki, Masatomo Nishikawa, Hiroimoto Tei, Kenichi Harada, Mototsugu Muramaki, Hideaki Miyake, Masato Fujisawa (Division of Urology, Kobe University Graduate School of Medicine)

Expression level of p62 protein in invasive bladder cancer as a prognostic predictor.

P-1303 Aberrantly Expressed HOXA10 Could Possibly Predict Recurrence after Radical Prostatectomy
Yuii Hatanka, De Velasco Marco 1, Takashi Oki 1, Yurie Kura 1, Yutaka Yamamoto 1, Kazuhiro Yoshimura 1, Nobutaka Shimizu 1, Masahiro Nozawa 1, Kazuhiro Yoshikawa 1, Kazuto Nishio 3, Hirotsugu Uemura 1 (Department of Urology, Kinki University School of Medicine, Department of Urology, Saiseikai Tondabayashi Hospital, Department of Genoma Biology, Kinki University School of Medicine, Promoting Center for Clinical Research, Aichi Medical University)

HOXA10 expression may predict recurrence after radical prostatectomy.

P-1304 Putative mechanism of seminal vesicle intraepithelial involvement by prostate cancer
Kosuke Miyai 1, Anna Kristiansen 1, Lars Egeved 1, Sergio Pinov-Oicedo 1, Munk K. Divitais 1, Steven S. Shen 1, Alberto G. Ayalia 1, Jae Y. Ro 1, Hiroshi Tsuda 1 (Dept. Basic Med., Natl. Defense Med. College, Department of Oncology-Pathology, Karolinska Institutet, Dept. Path. & Genomic Med., Houston Methodist Hosp.)

Seminal vesicle intraepithelial involvement by prostate cancer may be mediated by specific mechanisms.

P-1305 Endocrine FGFs promote progression in prostate cancer.

Endocrine FGFs promote progression in prostate cancer.

P-1306 PA2X hyper-expression promotes prostate cancer progression through AR gene upregulation
Takashi Ueda, Saya Ito, Akhisa Ueno, Hideo Nakagawa, Hidefumi Taniguchi, Fumiyuki Hongo, Kazumi Kamoi, Koji Okihara, Tsuneharu Miki (Dept. Urology, Kyoto Pref. Univ. Med.)

PA2X hyper-expression promotes prostate cancer progression through AR gene upregulation.
PAX2 is a AR transduction factor, also known as prostate-specific antigen, by which prostate cancer progression occurs.

P-1307

Inhibitory effects of 4E-BP1 expression on proliferative status in prostate cancer cells

Hiromoto Tei, Satoshi Imai, Akira Miyazaki, Masatomo Nishikawa, Jyunya Furukawa, Kenichi Harada, Nobuyuki Hinata, Motoshugu Murakami, Hideaki Miyake, Masato Fujisawa (Kobe Univ.)

P-1308

PAX2 upregulates androgen receptor gene expression in androgen-independent prostate cancer

Saya Uto, Takashi Ueda, Akhiha Ueno, Hideko Nakagawa, Hidefumi Taniguchi, Fumiya Honda, Kazumi Kamo, Koji Ohkura, Tsuneharu Miki (Dept. Urology, Kyoto Pref. Univ. Med.)

P-1309

Glutathione peroxidase 2 is a potential therapeutic molecule for urothelial carcinoma

Taku Naiki,*, Aya Naiki-Ito, Noriyasu Kawai, Keiichi Tozawa, Ryosuke Ando, Toshihiko Enami, Keitaro Iida, Kenjiro Kohri, Satoru Takahashi* (Dept. of Nephro-urol, Nagoya City Univ., Dept. of Exp. Pathol. Tumor Biol, Nagoya City Univ., Dept. of Urology, Daido Hospital)

P-1310

Regional Biases in Mutation Screening Due to Intratumoral Heterogeneity of Prostate Cancer

P-1311

Identification of PRL1 as diagnostic and therapeutic target for castration resistant prostate cancer by CAST method

Shunsuke Shimede††, Satoshi Komori, Masaaki Nakamura, Naoko Sakamoto††, Katsuhiko Ito††, Nobuyoshi Maruyama††, Hiroshi Ohno††, Tatsuro Araki††, Takashi Kobayashi, Naoki Terada, Takahiro Inoue, Seiji Naito (Department of Urology, Graduate School of Medical Pathology, Nara Med. Univ.)

P-1312

High expression of L-Amino acid transporter 1 predicts local progression in prostate cancer under active surveillance

Nobuyuki Yanagisawa**, Takefumi Satoh†, Kiyomi Hana†, Masaki Ichino†, Norio Nakada†, Hirotoshi Endo†, Isao Okayasu†, Yoshiki Murakumo† (Dept. Path., Kitasato Univ., Sch. Med., Dept. Urol., Kitasato Univ., Sch. Med., J-Pharma Co., Ltd.)

P-1313

Expression of Luminac in Human Prostate Cancer

Takashi Oki**, Marco A De Velasco**, Yui Hatakanaka**, Yurie Kura**, Yutaka Yamamoto**, Kazuhiro Yoshimura**, Nobutaka Shimizu**, Masahiro Nozawa**, Kazuhiro Yoshikawa**, Kazuto Nishio**, Hirotugu Umemura** (The Department of Urology, NTT West Osaka Hospital, 2Department of Urology, Kinki University Faculty of Medicine, 3Department of Genome Biology, Kinki University Faculty of Medicine, 4The Department of Urology, Tondabayashi Hospital, 5Promoting Center for Clinical Research, Aichi Medical University)

P-1314

The significance of galecin-3 as a candidate marker of tumor progression in prostate cancer

Tsot-Ochir Dongord, Tomoharu Fukumori, Kei Daizumoto, Tomoya Fukawa, Hiroyoshi Nakatsugi, Masayuki Takahashi, Hiro-omi Kanayama (Dept.Urology,HIBS,The Univ.Tokushima Graduate School)

P-1315

Long-term exposure to leptin induces proliferation of prostate cancer cells

P-1316

Insulin-like growth factor-I induces CLU expression through Twist1 to promote prostate cancer growth

Ari Takeuchi, Masaki Shiota, Katsunori Tatsugami, Akira Yokomizo, Seiji Naito (Department of Urology, Graduate School of Medical Sciences, Kyushu University)

P-1317

Establishment of a human tumor xenograft mouse model derived from a patient with prostatic small cell carcinoma

P-1318

The identification of the setiniph in prostate cancer cell behavior

P-1319

The pathogenesis of human prostate cancer by the Setiniph

Koichi Sekiya, Takashi Ueda, Akira Miyazaki, Masatomo Nishikawa, Jyunya Furukawa, Kenichi Harada, Nobuyuki Hinata, Motoshugu Murakami, Hideaki Miyake, Masato Fujisawa (Kobe Univ.)

P-1320

The significance of mutations in the SET domain of human prostate cancer cell behavior

P-1319 Involvement of the plk2 in chemoresistance of prostate cancer spheroids

前立腺からへルコイドの抗癌剤抵抗性のp53遺伝子の関与について(I)

P-1320 Inhibition of RSK/YB-1 signaling enhances the anti-cancer effect of enzalutamide in prostate cancer

前立腺におけるRSK/YB-1ケイタミドによるウサギタマトの抗腫瘍効果の増強

P-1321 Adipose-derived stromal cells inhibit prostate cancer cell proliferation inducing apoptosis
Kiyoshi Takahara, Massaki Hii, Teruo Inamoto, Koichiro Minami, Hajime Hirano, Hayahito Nomoto, Satoshi Kiyama, Michio Asahi, Haruhito Azuma (Department of Urology, Faculty of Medicine, Osaka Medical College, Department of Pharmacology, Faculty of Medicine, Osaka Medical College)

脂肪幹細胞を用いた前立腺癌抗癌療法効果の検討

P-1322 Development of the adenosine vector delivery system using γδT cells to prostate cancer cell
Yuki Hasebe, Yoshihisa Ogawa, Michio Naoe, Kocho Fuji, Takashi AoY, Hiroyuki Mizuguchi, Shuji Terao (Dept. Urology, Showa Univ., Sch. Med., Div. IEP cells Applications, graduate Sch. of Med., Kobe Univ., Graduate School of Pharm. Sci., Osaka Univ., Terao Clinic)

前立腺癌に対するγδT細胞を用いたアデノソイヌスベクテリバカリシステムの開発

P-1323 PAPST1 siRNA inhibits proliferation in DAOY medulloblastoma cell line
Qingyu Xu, Shengqing LV, Lichao Li, Xiaopeng Zhu, Jesse Chung-Sean Pang, Jingling Liu (Dept.of Neurosurgery, Xinxiang Hospital, TMMU, Dept. of Neurosurgery, First Hospital, Lanzhou University, Dept. of Anatomical and Cellular Pathology, CUHK, Dept. of Neurosurgery, Xiangya Hospital, Central South University)

P-1324 Identification of microRNAs associated with prognosis of primary CNS lymphoma

中枢神経原発悪性リンパ腫の予後に関与するマイクロRNAの探索

P-1325 Bevacizumab for malignant glioma. A single-institution experience
Motomasa Furuse, Shinji Kawabata, Shin-Ichi Miyake, Toshihiko Kuroiwa (Dept. of Neurosurgery, Osaka Medical College, Osaka Medical College Hospital Cancer Center)

悪性神経腫瘍に対するベバキサマブ

P-1326 Cytotoxic human peripheral blood-derived γδT cells kill glioblastoma cell lines

ヒト末梢由来悪性腫瘍細胞に対するγδT細胞の殺細胞効果

P-1327 Evaluation of PDT performed with LP-IDOPE and two different NIR sources on a rat glioma model
Sayaka Shibata, Yutaka Tamara, Akiko Suganami, Yasuo Iwadate, Natsumi Shinoochi (MRC, NIRS, Dept. Bioinfor., Chiba Univ., Dept. Neurosurg., Chiba Univ.)

LP-IDOPEと2つの異なる近赤外光光源による光動学療法のラットグリオーマモデルにおける評価

P-1328 Novel HER2 mutations in transmembrane domain result in constitutive autophosphorylation of HER2

新規HER2膜貫通領域に発現する新機能解析

P-1329 Assessment of individual resistant mechanism for ALK kinase inhibitor using a primary culture system
Hiroko Endo, Kazumi Nishino, Toru Kumagai, Hiroki Okuyama, Fumi Imamura, Masahiro Inoue (Osaka Medical Center for Cancer and Cardiovascular Diseases, Biochem., Osaka Medical Center for Cancer and Cardiovascular Diseases, Thoracic Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Pathology)

ランク4のカルチアーナ細胞を用いた患者個人のALK阻害剤耐性機序の評価

P-1330 Vinorelbine Resistance in Lung Cancer Cell Lines; Role of Focal Adhesion Signaling Pathway
Takao Nakashiki, Toshi Menju, Kei Shimaka, Terumasa Sowa, Naoto Imamura, Makoto Sonobe, Massaki Sato, Fengshi Chen, Hiroshi Date (Dept. Thoracic Surg., Keyo Univ. Sch. Med.)

ビノレビル耐性肺腫瘤細胞株におけるFocal Adhesionバンクウェイ

P-1331 Digoxin suppresses tumor growth and invasion through inhibiting Src activation in non-small-cell lung cancer

P-1332 Rapamycin sensitizes cancer cells to growth inhibition by the PARP inhibitor olaparib
Atsushi Oosogawa, Michiyo Miyawaki, Shuji Suehiro, Takashi Hashimoto, Yohoku Tamaki, Miyuichi Abe, Suguro Kenji (Dept Thorac. Breast Surg, Oita Univ FOM)

P-1333 Monitoring of circulating PD-1+ cells in patients with non-small cell lung cancer after radical surgery
Tomoyuki Igarashi, Yoko Katoaka, Yasuhiko Ohshio, Jun Hanaoka, Koji Teramoto, Yataro Daigo (Dept. of Surg., Shiga Univ. of Med. Sci., Dept. of Med. Oncol., Shiga Univ. of Med. Sci.)

P-1334 Comprehensive miRNA profiling of advanced stages of lung cancer
Yasen Mahmoud, Hiroki Nagano, Hironori Ninomiya, Obuhisa Gulambar, Noriko Motoi, Yuichi Ishikawa (Division of Path, The Cancer Institute, JFCCR, Tokyo, Japan.)

P-1335 Altered Expressions of Chromatin Remodelling Factors (BRG1, BRM, ARID1A, ARID1B, BAF47) in Non-small Cell Lung Cancer

P-1336 Expression of YAP1, a Hippo signaling target, in lung adenocarcinoma: correlation with pathologic features and prognosis
Daisuke Matsubara, Takeshi Ito, Ichidai Tanaka, Teppei Morikawa, Atsushi Nakamura, Toshio Niki (Dept. of Molecular Pathology, IMSUT, Div. of Molecular Oncology, ACCRI, Dept. of human pathology, univ. of Tokyo, Dept. of thoracic surgery, univ. of Tokyo, Integrative pathology, jichi medical univ.)

P-1337 The correlation between EMT and cancer stemness in lung adenocarcinoma affects on its prognosis

P-1338 High Vimentin Expression Correlated with Worse Prognosis of Lung Adenocarcinomas with Micropapillar Element

P-1339 Analysis on prognostic factors in resected lung cancer with ALK fusion with particular interests in MIB-1 labeling index
Matsusora Yosuke, Noriko Motoi, Hironori Ninomiya, Sakae Okumura, Yuichi Ishikawa (Dept. of Path., The Cancer Inst., Dept. of Thorac. Surg, Oncol., The Cancer Inst. Hosp.)

P-1340 Pharmacokinetic Parameters of Gefitinib Predicts its Progression Free Survival and Adverse Events
Yoichi Nakamura, Kosuke Mizoguchi, Kazumi Sano, Yoji Ikegami, Kohei Motoshima, Shinnosuke Takemoto, Koichi Ogawa, Hiroki Senju, Hiroshi Gyotoku, Katsumi Nakamori, Minoru Fukuda, Shigeru Kohno (2nd Department of Internal Medicine, Nagasaki University School of Medicine, Department of Drug Metabolism and Disposition, Meiji Pharmaceutical University, Nagasaki university clinical oncology center)

P-1341 SPARC, possibility as a predictive marker to albumin-bound paclitaxel in non-small cell lung cancer
Kazutoshi Komiya, Naoko Saeoka-Aragane, Naomi Kobayashi, Akemi Satoh, Tomoma Nakamura, Shinnori Hayashi, Shinzama Kimura (Dept. of Internal Medicine, Faculty of Medicine, Kitasato University)

P-1342 Evaluation of the class III beta-tubulin expression for tailor-made chemotherapy against non-small cell lung cancer
Hirai Tatsuya, Shoji Tsuyoshi, Sumitomo Ryota, Huang Cheng-long (Dept. Thorac. Surg., Kitano Hospital)

P-1343 Intratumoral expression of topoisomerase 2 and 2B in non-small cell lung cancers
Ryota Sumitomo, Tatsuya Hirai, Tsuyoshi Shoji, Cheng-long Huang (Dept. Thorac. Surg., Kitano Hospital)

P-1344 Systemic inflammatory responses and survival of patients with resected non-small cell lung cancers
P-1345 Expression of IL24 in lung adenocarcinoma
Shigeki Umaeda, Kohji Okudela, Youko Tateishi, Youko Kojima, Kenichi Ohashi (Dept. of Pathol., Yokohama City Univ. Grad. Sch. of Med.)

P-1352 Resistance to chemotherapy-induced apoptosis in a subpopulation of EpCAM-positive ovarian cancer cells
Shinsho Tawagami, Takeshi Motohara, Isao Sakaguchi, Hironoru Tashiro, Hitotaka Katabuchi (Kumamoto Univ./ob/gyn)

P-1354 Comprehensive genetic analysis for primary peritoneal cancer
Yasunari Amano, Koji Yamamoto, Noriomi Matsumura, Yasuki Amato, Koji Yamamoto, Ryouuke Murakami, Kaoru Abiko, Yumiko Yoshioka, Junzo Hama, Masami Kishiyama, Tsukasa Baba, Isamu Koshini (Dept. Gynecology & Obstetrics, Kyoto Univ.)

P-1358 Chairperson: Hiyori Yoshikawa (Dept. Ob/Gyn, Fac.Med. Univ. Tsukuba)

P-1346 Loss of SWI/SNF chromatin-remodeling complex is a prognostic biomarker in ovarian clear cell carcinoma.
Ken Yamaguchi, Hisahiro Abou-Taleb, Noriomi Matsumura, Yasuki Amano, Koji Yamamoto, Ryouuke Murakami, Kaoru Abiko, Yumiko Yoshioka, Junzo Hama, Masami Kishiyama, Tsukasa Baba, Isamu Koshini (Dept. Gynecology & Obstetrics, Kyoto Univ.)

P-1355 Ovarian cancer

P-1358 Chairperson: Hiyori Yoshikawa (Dept. Ob/Gyn, Fac.Med. Univ. Tsukuba)

P-1354 Functional assessment of driver mutations in individual ovarian cancers
Takako Yokomizo1, Takeshi Fujiiwara1, Osamu Gotoh2, Tokuichi Kagawachi, Tetsuo Noda1, Seichi Morii1 (The Cancer Institute, Japanese Foundation for Cancer Research, The Cancer Institute, Japanese Foundation for Cancer Research, The Cancer Institute, Japanese Foundation for Cancer Research)

P-1347 The Warburg effect caused by HNF1 β is promising therapeutic targets in ovarian clear cell carcinoma.
Yasunari Amano1, Ken Yamaguchi2, Noriomi Matsunuma, Tsukasa Baba1, Junzo Hama1, Masami Kishiyama, Kaoru Abiko1, Isamu Koshini1 (OB/GYN, Grad. Sch. Med., Kyoto Univ., OB/GYN, Sch. Med., Kindai Univ.)

P-1348 Serum angiogenic factors may predict prognosis in epithelial ovarian cancer
Komatsu Hiroki, Tetsuro Nishiki, Hiroaki Imanishi, Munechi Shimada, Shinya Sato, Jun Chikami, Seiya Sato, Akiko Kudo, Nao Oumi, Junzo Kikawa, Atsuko Harada (Dept. of Obstetrics and Gynecology, Tottori Univ., Sch. of Med.)

P-1356 Effect of photodynamic therapy using 5-aminolevulinic acid for ovarian cancer cells in vitro and in vivo
Mika Mizuno, Toshiya Teshigawara1, Ryusichi Sekiyama, Hiroki Mitsuji, Shiro Suzuki1, Hiroaki Kajiyama, Kiyosumi Shibata1, Fumitaka Kikkawa, Katsushi Inoue, Kiyosumi Shibata1, Motomu Nakajima (¨OB&GY. Med., Nagoya Univ.,¨SBI Pharmaceuticals Co.)

P-1349 Comprehensive genetic analysis for primary peritoneal cancer
Shinichi Komiyama, Kaneyuki Kubushiro (Dept. Gynecology, Toho Univ., Ohashi Med. Ctr.)

P-1347 Effect of photodynamic therapy using 5-aminolevulinic acid for ovarian cancer cells in vitro and in vivo
Mika Mizuno, Toshiya Teshigawara1, Ryusichi Sekiyama, Hiroki Mitsuji, Shiro Suzuki1, Hiroaki Kajiyama, Kiyosumi Shibata1, Fumitaka Kikkawa, Katsushi Inoue, Kiyosumi Shibata1, Motomu Nakajima (¨OB&GY. Med., Nagoya Univ.,¨SBI Pharmaceuticals Co.)

P-1350 Various actions of Par3 polarity protein in cancer invasion
Hiroe Nakamura, Kazunori Nagashika, Kei Kawama, Ayumi Taguchi, Asahi Fujimoto, Haruka Nishida, Tomoko Inoue, Katsuyuki Adachi, Yoko Matsumoto, Takahide Arimoto, Katsutoshi Oda, Minoru Osuga, Tomoyuki Fujii (The University of Tokyo Hospital)

P-1351 Antitumor effect of resveratrol by modulating tumor microenvironment and inducing cancer cell apoptosis in mouse model
Ayumi Taguchi1, Kei Kawama1, Kazunori Nagashika1, Mitsuyo Yoshida2, Hiroe Nakamura2, Aki Yamashita1, Katsuyuki Adachi2, Yoko Matsumoto1, Takahide Arimoto1, Katsutoshi Oda, Tomoyuki Fujii1 (¨Obstet. & Gynecol., JCHO.TokyoShinjuku.Med.Ctr.,¨Obstet. & Gynecol.,Tokyo Univ.)

P-1357 Withdrawn

P-1352 Resistance to chemotherapy-induced apoptosis in a subpopulation of EpCAM-positive ovarian cancer cells
Shinsho Tawagami, Takeshi Motohara, Isao Sakaguchi, Hironoru Tashiro, Hitotaka Katabuchi (Kumamoto Univ./ob/gyn)

P-1355 Ovarian cancer

P-1347 Effect of photodynamic therapy using 5-aminolevulinic acid for ovarian cancer cells in vitro and in vivo
Mika Mizuno, Toshiya Teshigawara1, Ryusichi Sekiyama, Hiroki Mitsuji, Shiro Suzuki1, Hiroaki Kajiyama, Kiyosumi Shibata1, Fumitaka Kikkawa, Katsushi Inoue, Kiyosumi Shibata1, Motomu Nakajima (¨OB&GY. Med., Nagoya Univ.,¨SBI Pharmaceuticals Co.)

P-1350 Various actions of Par3 polarity protein in cancer invasion
Hiroe Nakamura, Kazunori Nagashika, Kei Kawama, Ayumi Taguchi, Asahi Fujimoto, Haruka Nishida, Tomoko Inoue, Katsuyuki Adachi, Yoko Matsumoto, Takahide Arimoto, Katsutoshi Oda, Minoru Osuga, Tomoyuki Fujii (The University of Tokyo Hospital)

P-1351 Antitumor effect of resveratrol by modulating tumor microenvironment and inducing cancer cell apoptosis in mouse model
Ayumi Taguchi1, Kei Kawama1, Kazunori Nagashika1, Mitsuyo Yoshida2, Hiroe Nakamura2, Aki Yamashita1, Katsuyuki Adachi2, Yoko Matsumoto1, Takahide Arimoto1, Katsutoshi Oda, Tomoyuki Fujii1 (¨Obstet. & Gynecol., JCHO.TokyoShinjuku.Med.Ctr.,¨Obstet. & Gynecol.,Tokyo Univ.)

P-1357 Withdrawn

P-1354 Functional assessment of driver mutations in individual ovarian cancers
Takako Yokomizo1, Takeshi Fujiiwara1, Osamu Gotoh2, Tokuichi Kagawachi, Tetsuo Noda1, Seichi Morii1 (The Cancer Institute, Japanese Foundation for Cancer Research, The Cancer Institute, Japanese Foundation for Cancer Research, The Cancer Institute, Japanese Foundation for Cancer Research)
P-1359 Role of sulfatide in adenocarcinoma of the cervix
Masaki Miyazawa1, Mariko Miyazawa1, Taro Sugiyama1, Naruaki Matsu1, Sachiko Fujii1, Masae Ikeda1, Masako Shida1, Takeshi Hirohisa1, Hiroshi Kajiwara1, Yoshinori Muramatsu1, Masao Iwamoto1, Miki Mikami1 (Dept. Obst. Gynecol., Sch. Med., Tokai Univ., Dept. Pathol., Sch. Med., Tokai Univ., Dept. Biochem., Fac. Sci. Tech., Kinki Univ.)

子宮頸部腺癌におけるSulfatideの役割と機能
宮澤昌昭1, 宮澤麻里子1, 杉山太郎1, 松井成明2, 藤井幸子1, 池田仁儀1, 信田政子1, 平澤力1, 萩原健1, 池松俊成1, 岩森正1, 木下幹1 (東大・産婦人科, 東大・医, 病理診断科, 近畿大学, 医学部, 生理科学系化学)

P-1360 The polymorphism in PICT-1 and the risk of human uterine cancers
Masafumi Yoshimoto1, Ayami Eguchi1, Kunihiko Nishiwaki1, Kazuo Sengoku1, Yuji Yaginuma1 (Grad. Sch. Health Sci., Kumamoto Univ., Dept. Oncology, Grad. Sch. Health Sci., Kumamoto Univ., Dept. Obstetrics & Gynecol., Asahikawa Med. Univ.)

PICT-1遺伝子多型とヒト子宮癌との関連性
吉本翼史1, 江口礼子1, 西脇邦彦2, 千石一輝3, 柳沼裕2 (熊本大学保健学部, 熊本大学生命科学研究部, 保健学科, 旭川医科大学, 産婦人科)

P-1361 Combination therapy with metformin and dienogest as a potential treatment for endometrial cancer
Megumi Yanokura1, Kouji Banno1, Yoko Umene1, Kenta Masuda1, Iori Kisu1, Arisa Ueki1, Yusuke Kobayashi1, Wataru Yamagami1, Nobuyuki Susumu1, Daisuke Aoki1 (Dept. Ob. & Gy., Kielo Univ., Sch. Med., Univ. Obstetrics & Gynecol., Grad. Sch., Biol. Sci., Guneyol, Kawasaki municipal iida hosp.)

メトフォルミンとディエノゲスト併用による新たな子宮体癌治療の可能性
矢野篤恵1, 岡本浩司1, 梅根紀代子1, 増田健太1, 木村伊織1, 栗木有香2, 小林裕介1, 山上進1, 峯亨香1, 青木大輔1 (慶大・医, 産婦人科, 碧野病院, 九州立病院病院)

P-1362 NUCB2 in human endometrial carcinoma as a potent prognostic factor
Kiyoshi Takagi1, Yasuhiro Miki1, Sota Tanaka1, Nobuo Yaeashige1, Hiroonobu Sasano1, Kiyoshi Ito1, Takashi Suzuki1 (Dept., Pathol & Histotech., Tohoku Univ., Grad. Sch., Med., Department Obstetrics and Gynecol., IRIDeS., Tohoku Univ., Dept., Ob/Gyn., Tohoku Univ., Grad., Sch., Med., Dept., Anatomic Pathol., Tohoku Univ., Grad., Sch., Med.)

子宮内膜癌におけるNUCB2の発現意義
高木清宏1, 三木康宏2, 田中健太1, 八重樫伸生1, 笠野公伸1, 伊藤潔1 (東北大学, 医・病理検査学, 東北大学, 災害医学, 災害産婦人科学, 東北大学, 医・産婦人科学, 東北大学, 医・病理診断学)

P-1365 Epigenetic gene silencing of DLX4 and SIM1 detection in liquid-based cytology for cervical cancer screening
Junichi Sakane1,2, Kiyomi Taniyama2, Kazuaki Miyamoto2, Kazuhiro Sentani1,2, Kazuya Kuraoka2, Naohide Oue2, Wataru Yatsu1 (Dept. Mol. Pathol., Hiroshima, Univ., Institute Clin. Res., NHO Kure Medical Center, Chugoku Cancer Center, Dept. Surg., NHO Hiroshisha Medical Center.)

子宮頸症スクリーニング液状検体(LBC)法におけるDLX4及びSIM1遺伝子抑制と検出
塚根潤一1, 2, 山本満2, 宮本和明1, 仙谷和弘1, 阿部和辺1, 大上直幸1, 安井 弥1 (広島大, 医院病理学, 母子病理, 女医療, 中国がん診療研究部, 東広島医療, 外科)

P-1366 Analysis of mismatch repair deficiency in endometrial carcinomas
Ayumi Shikama1, Takeo Minaguchi1, Azusa Akiyama1, Sari Nakao2, Hiroyuki Ochi1, Mamiko Onuki1, Kohji Matsumoto1, Tomoji Satoh1, Akinori Oki1, Hiroyuki Yoshihaka1 (Obstet. Gynecol. Dept., Tsukuba Univ., Obstet. Gynecol. Dept., Ibaraki Prefectural Central Hospital, Obstet. Gynecol. Dept., Tsukuba Gakuen hospital)

子宮内膜癌におけるミスマッチ修復機能の解析
志村香里1, 水口 勝雄1, 秋山 梅3, 中尾 砂理1, 越智 嵐幸1, 小貫 麻美子1, 松本 光司1, 佐藤 豊美1, 冲 明典1, 吉川 裕之1 (筑波大学医学部産科婦人科学, 医学部病理学, 産婦人科, 産婦人科)

P-1359 An internet survey: Factors affecting HPV vaccination after media reports and suspension of governmental recommendation

子宮頸がん予防ワクチンの反応効果・積極的喚起一時中止後の接種行動に影響を与えた因子に関するインターネット調査
高田友美1, 上田 豊1, 森本 恵子1, 寺井 義人1, 佐藤 俊幸1, 木村 正1, 藤田雄1, 斎藤 淳吾1, 代田 昌紀1, 中井 英勝1, 橋本 賢之1 (大阪大, 医・産婦人科, 大阪医大, 医・産婦人科, 大阪市大, 医・産婦人科, 国立医大, 医・産婦人科, 近畿大学, 医・産婦人科, 新潟大学, 医・産婦人科)

P-1363 Role of HIF-1α, CA-IX, GLUT-1 and VEGF in lymph-node metastasis and prognosis of locally advanced cervical cancer
Keita Iwasaki1, Hiroshu Tabushita1, Akihiko Wakatuki (Dept.Ob Gyne, Aichi Med. Univ., Sch. Med.)

子宮頸癌における、HIF-1α,CA-9,GULT1およびVEGFの臨床病理学的役割
岩崎 慶1, 藤本 國1, 東北大学, 医・病理検査学, 東北大学, 災害医学, 災害産婦人科学, 東北大学, 医・産婦人科学, 東北大学, 医・病理診断学)

P-1364 Preoperative diagnosis and clinical course of 84 cases presenting with multi-cystic lesions of the uterine cervix
Hirofumi Ando1, Tsutomu Miyamoto1, Akiko Takatsu1, Yasushi Yamada1, Shotaro Higuchi1, Hisanori Kobara1, Hiroyasu Kashima1, Tanri Shiozawa1 (Department of Obstetrics and Gynecology, Shinshu University School of Medicine)

子宮頸部多囊胞性病変を示した84例の術前診断と臨床経過の検討
安藤 大史1, 宮本 強1, 高津 彦希1, 山田 順1, 橋口 正太2, 小原 久典1, 鹿島 大希1, 塩沢 丹利1 (仙台大学医学部臨床婦人科学教室)
Diagnosis by tumor markers and biomarkers (1)

座長: 大井 華史（金沢大学・医学研究所・分子細胞病理学）

P-1368
Serum immunoglobulin G Fc N-glycosylation profiling in breast cancer by MALDI-MS

MALDI-MS を用いた乳癌血清 IgG Fc N型糖鎖のプロファイル
金岡 龍一、野村 元, 佐藤 明人, 小林 喜美, 岩崎 健太郎

P-1369
Clinical significance of soluble CD26 in malignant pleural mesothelioma

胸膜皮膚における可溶性CD26の臨床的有用性に関する検討
藤本 伸一, 青江 隆博, 小林 喜美, 野村 卓也, 阿部 輔生, 高木 重男, 渋谷 隆明, 小野寺 美和, 片山 日出子, 齊藤 慎吾, 塩谷 眞澄, 小森 隆司, 鈴木 貴之, 川村 美和, 松本 隆男, 佐々木 幹之, 佐藤 正寛, 鈴村 和男, 土田 龍哉, 田中 義一, 小林 充, 小泉 貴宏, 藤井 義之, 島田 眞, 深見 清美, 沢田 宏之, 坂本 力人, 村田 友矢, 小泉 史明（都立朝日病院、国がん中央呼吸器内科、都立横濱臨床研究支援室）

P-1370
Decreased levels of long-chain fatty acids and glycerophosphocholines in pancreatic cancer: Biomarkers and increased risk

膵がん患者の長鎖脂肪酸とグリセロホスホコリンの枯渇レベル: 膵がんリスクのバイオマーカーとしての検証
山崎 省代, 越村 秋史, 田中 伊知朗, 芹沢 元, 守屋 かおり, 岩崎 正樹, 森川 耕一, 滝口 亜利枝, 沢田 秀明, 宮崎 関雄, 野村 丈夫, 高隣 隆男 (Phenomeon Discoveries Inc., 大阪・医大・消化器外科, がん研究会等有病院, 麻布大・生命・環境科学・生化学, クラゲ・大・院外・細胞制御外科, 大阪・院外・分子病理解析室)

P-1371
Salivary Tumor Suppressor Maspin as a Potential Negative Biomarker for Oral Cancer
Konghawat Chatravit, Sirinthip Choonate, Sineerat Talungchitr, Aranyong Wongnoppakhee, Rudee Surarat (Dept. of Oral Biology, Faculty of Dentistry, Mahidol University, THAILAND, Dept. of Biochemistry, Faculty of Medicine, Chiang Mai University, THAILAND)

唾液中マスピンに対する唾液癌の悪性度の強さを示す可能性を示すバイオマーカー
Konghawat Chatravit, Sirinthip Choonate, Sineerat Talungchitr, Aranyong Wongnoppakhee, Rudee Surarat (Mahidol University, Thailand, Chiang Mai University, Thailand)

P-1372
HER2 amplification detected in the circulating DNA of patients with gastric cancer: a retrospective pilot study
Katsuma Kishida, Shiga Tatsuhiko, Iwai Hiroshi, Amami Kosei, Nishiaki Kenji, Ishii Koshi, Ito Seiichi (Division of Digestive Surgery, Kyoto Prefectural Univ. Med., Department of Human Genetics, Tokushima University Graduate Sch.)

胃がん患者における遊離DNA中HER2増幅の臨床的意義
庄田 善俊, 畠山 清, 市川 典男, 伊藤 健夫, 今井 耕志, 安井 祐次, 大塚 哲也（京都府立医科大学, 医・消化器外科, 厚生 utiliza学分野）

P-1373
Non-invasive monitoring system for increased acquisition to EGFR-tyrosine kinase inhibitors using circulating plasma DNA

血漿遊離DNAを用いたEGFRチロシン激酶阻害剤の非侵襲的モニタリングシステム
安元 尚子, 中村 朝克, 佐藤 明人, 小林 喜美, 岩崎 健太郎, 岩崎 敬, 角田 徹, 平井 靜光, 末広 隆則, 岡田 詠生, 木村 贽也（佐藤 大・医, 血液・呼吸器・腫瘍内科, 佐賀県立病院センター好気・呼吸器内科, アーナレ株式会社, 佐賀大学附属病院検査部, 熊本大学医学系研究センター）

P-1374
Detection of EGFR mutation in cell-free DNA in plasma from lung cancer patients before and after treatment of TKI

EGFR遺伝子変異測定
澤田 武志, 下村 凜子, 島田 眞, 堀之内 勝, 藤原 信, 阪原 泰, 山本 義, 村田 友矢, 小泉 史明（都立朝日病院、国がん中央呼吸器内科、都立横濱臨床研究支援室）

P-1375
Alternation in glycan structure on CSF1R as a glycomimetic for evaluation of liver cirrhosis

肝硬変（特に肝硬変）を評価するための糖鎖バイオマーカー
WFA-CSF1Rの開発
相円 信世, 須馬 清, 鳥原 喜洋, 萩村 拓也, 久野 敦, 坂出 大介, 万木 紀, 田中 潤, 藤原 憲, 藤原 信, 阪原 泰, 山本 信人, 田中 友矢, 小泉 史明（都立朝日病院、国がん中央呼吸器内科、都立横濱臨床研究支援室）

P-1376
Alpha-2-macroglobulin-mediated site-specific proteolysis enhances the efficient detection for low abundant biomarkers

血中微量バイオマーカー分子由来ペプチドの効率的な生成に、A2Mの関与が示唆される。
青木 隆, 鈴木 淳, 遠藤 敬, 田中 茂生, 青木 大輔, 佐藤 孝明（株）島津製作所, ライブサンインク研究所, 慈恵医療大学医学部, 産婦人科学教室）

P-1377
Dynamic analysis of circulating tumor genome (CTG) and circulating tumor cells (CTCs) in an animal model

動物実験における血液中臨床がん遺伝子と血液中臨床がん細胞の動的解析
植田 昌幸, 村上 一, 林 正弘（高崎健康福祉大学, 薬学部, 分子創薬学部, 高崎健康福祉大学, 薬学部, 健康生物学科）
P-1378 Visfatin/Resistin and the Prevalence of Colorectal Adenoma
Aiko Maejima1, Yasuhide Yamada2, Taiki Yamaji2, Yoshitaka Honma3, Natsuko Okita1, Atsu Takashima1, Satoru Iwasa1, Ken Kato4, Tetsuya Hamaguchi1, Yasuhiro Shimada2, Shoichiro Tsugane4 (1Dept. of Gastrointestinal Oncol., Natl. Cancer Ctr. Hosp., 2Dept. of Surgery, Showa University Koto Toyosu Hospital, 3Dept. of Medicine, Teikyo University Institute of Molecular and Medical Oncology, 4Graduate School of Science and Engineering, Kagoshima Univ.)

Evaluation of ANGPTL2 as biomarker for diagnosing the gastrointestinal cancer
Takuma Yoshina1, Takamasa Shigemitsu1, Hiroto Nishimata2, Ken Kato4, Tetsuya Hamaguchi1, Yasuhiro Shimada2, Shoichiro Tsugane4 (1Dept. of Gastrointestinal Oncol., Natl. Cancer Ctr. Hosp., 2Dept. of Surgery, Showa University Koto Toyosu Hospital, 3Dept. of Medicine, Teikyo University Institute of Molecular and Medical Oncology, 4Graduate School of Science and Engineering, Kagoshima Univ.)

P-1382 Soluble EphA2 is a potential biomarker for lung cancer patients
Tadanori Kondo, Hiroki Yamoto, Kento Usui, Kazunori Kato (Dept. Biomed. Eng., Toyo Univ.)

P-1383 Evaluation of ANGPTL2 as biomarker for diagnosing the gastrointestinal cancer
Takuma Yoshina1, Takamasa Shigemitsu1, Hiroto Nishimata2, Takayuki Takei1, Masahiro Yoshida1, Naoki Terada, Takahiro Inoue, Yu Miyazaki, Masayuki Hayashi1, Masaki Bando2, Katsuyuki Hasegawa2, Itsuro Inoue1 (1Dept. of Gastrointestinal Oncol., Natl. Cancer Ctr. Hosp., 2Dept. of Surgery, Showa University Koto Toyosu Hospital)

P-1384 Evaluation of tumor burden by cell-free DNA in plasma of colorectal cancer patients

P-1379 Molecular characteristics of CTC and usefulness as biomarker in ESCC patients treated with peptide vaccine
Hisae Inada, Kei Sato1, Hiroto Nishimata2, Satoshi Nishizuka1,2,4, Kohei Kume1,2,3, Takeshi Iwaya1,2, Go Wakabayashi4 (1Dept. of Gastrointestinal Oncol., Natl. Cancer Ctr. Hosp., 2Dept. of Surgery, Iwate Med. Univ., Sch. Med., 3Dept. Therapy, Iwate Med. Univ., 4Graduate School of Science and Engineering, Kagoshima Univ.)

P-1380 In situ lipid profiling of prostate cancer tissues using high resolution imaging mass spectrometry
Takayuki Goto1, Naoki Terada1, Takahiro Inoue2, Yu Miyazaki2, Masayuki Hayashi1, Masaki Bando2, Katsuyuki Hasegawa2, Itsuro Inoue1 (1Dept. of Gastrointestinal Oncol., Natl. Cancer Ctr. Hosp., 2Dept. of Surgery, Iwate Med. Univ.)

Room P(D1-1) Sep. 25 (Thu.) 17:00-17:45

P15-3 New cancer diagnostic technology

Chairperson: Mitsuto Satake (Department of Diagnostic Radiology, National Cancer Center Hospital East)

座長: 佐竹 光夫（国立がん研究センター東病院・放射線診断科）

P-1381 Comparison of microRNA expression levels obtained from serum, exosome-enriched serum, and tumor tissue in DLBCL patients
Katsushige Inada1, Yasuhiro Shimada2, Satoshi Nishizuka3, Hiroto Nishimata4, Mitsuhiro Horii1, Hiroshi Kojima2 (1Dept. of Hematology, Ibaraki Pref. Central Hosp., 2Dept. of Medical Oncology, Ibaraki Pref. Central Hosp., 3Dept. of Pathology, Ibaraki Pref. Central Hosp., 4Ibaraki Clin. Education & Training Ctr, Univ. of Tsukuba Hosp.)

びまん性大細胞型B細胞リンパ腫における血清、エキソソーム、組織由来miRNAの発現比較
稲田 勝美1, 大越 順2, 張 婉穎3, 藤村 宗雄4, 坪 光雄5, 小鳥 信2（1茨城県立中央病院・血液内科, 2茨城県立中央病院・腫瘍内科, 3茨城県立中央病院・病理診断科, 4筑波大学附属病院・茨城県地域臨床教育センター）

P-1382 Suitable EphA2 is a potential biomarker for lung cancer patients
Tadanori Kondo, Hiroki Yamoto, Kento Usui, Kazunori Kato (Dept. Biomed. Eng., Toyo Univ.)

P-1383 Evaluation of ANGPTL2 as biomarker for diagnosing the gastrointestinal cancer
Takuma Yoshina1, Takamasa Shigemitsu1, Hiroto Nishimata2, Takayuki Takei1, Masahiro Yoshida1 (1Graduate School of Science and Engineering, Kagoshima Univ., 2Division of Clinical Application, Nanpu Hospital, 3Department of Gastroenterology, Nanpu Hospital)

消化器癌の診断のためのバイオマーカーとしてのANGPTL2の評価
吉永 拓真1, 2, 重光 孝政1, 2, 西條 寛人1, 2, 武井 孝行1, 2, 吉田 昌弘1 (1鹿児島大学病院・理工, 2南風病院・臨床応用開発室, 3南風病院・消化器内科)
Interaction between targeting reagents

Chairperson: Shinji Takeuchi (Div. Medical Oncology, Cancer Research Institute, Kanazawa Univ.)

座長: 竹内 伸司 (金沢大学がん進展制御研究所腫瘍内科)

P-1386

Bendamustine and Btk inhibitor show the synergistic cytotoxicity in mantle cell lymphoma cells

Kazumi Hagiwara, Yasuhiko Miyata, Tomoki Naoe, Hirokazu Nagai (Clin. Res. Ctr., NHO Nagoya Medical Center)

P-1387

Inhibition of Ras pathway enhances the cytotoxic effects of anti-cancer drug in colon cancer

Hirotsuka Shimaoka, Masanobu Tsukubi, Tomoya Takeda, Kotaro Sakamoto, Arika Fujita, Keiji Mashimo, Daichiro Fujiwara, Kazuhiko Sakaguchi, Shozo Nishida (Dept. of Pharmacotherapy, Fac of Pharmacy, Kinki Univ., Dept. of Pharmacy, Japanese Red Cross Society Wakayama Medical Center)

P-1388

Co-administration of gefitinib and luteolin induced efficient cell death of human prostate cancer PC-3 cells

Towa Sasaki, Dai-suke Okuzaki, Yoko Naito, Norikazu Yabuta, Hiroshi Nojima (Dept. of Mol. Genet, R.I.M.D. Osaka Univ.)

P-1389

Synergistic antitumor effect by combination of a PI3K/mTOR inhibitor and a MEK inhibitor in endometrial cancer

Kanako Inaba, Katsumoto Oda, Aki Miyasaka, Yuji Ikeda, Coumuran Egile, Loie Vincent, Veronique Onado, Tomohiko Fukuda, Osamu Hiroi, Kei Kawana, Osuga Yutaka, Tomoyuki Fujiji (Dept. of Obs&Gyn, The University of Tokyo, Sano-an-Aventis, CO. LTD)

P-1390

PKCβ controls the proliferation of lung adenocarcinoma cells via EGFR and MET endocytic trafficking.

P-1391

Hepatoma Cells Acquire Sorafenib Resistance Through Akt-Fibroblast Growth Factor Signaling

P-1392

Combination of nutlin-3a and Hsp90 inhibitor produces p53-dependent synergism on human mesothelioma cells

P-1393

Antitumor effect of HSP90 inhibitor against esophageal cancer

Masahiro Yamahara, Toshihiro Hirai, Tsutomu Nohno, Naoki Katase, Akira Yamauchi, Makoto Okawaki, Hideo Matsumoto, Futoshi Kuribayashi, Masafumi Nakamura, Yoshiyuki Yamaguchi (Dept. of Clinical Oncology, Kawasaki Medical School, Dept. of Digestive Surgery, Kawasaki Medical School, Dept. of Molecular and Developmental Biology, Kawasaki Medical School, Dept. of Biochemistry, Kawasaki Medical School)

P-1394

Role of Hsp90 in cholangiocarcinoma cell growth and metastasis

Japen Puetskasichonphasuta, Tsangonn Suthppongcharpai (Department of Biochemistry, Faculty of Science, Mahidol University)

P-1395

Proeasome inhibitors diminish MEK inhibitors-mediated P-glycoprotein down-regulation

P-1396

In vitro analysis for predictors of cetuximab-sensitivity in human oral cancer cell lines

P-1397

Effect of combined rapamycin/17-AAG treatment on the HIF-1/α/VEGF expression in hepatocellular carcinoma

P-1398

MEK specific inhibitor, SMK-17 selectively induces apoptosis in beta-catenin mutated tumors

P-1399 Antitumor effect of intravenous injection of an HB-EGF inhibitor, CRM197, in triple negative breast cancer

P-1400 Reduction of leukemia cell burden and restoration of normal hematopoiesis at 3 months of crizotinib in RANBP2-ALK AML

Hiroshi Ohta (Dept. Hematol., Tenri Hosp.)

P-1401 Withdrawn

P-1402 Efficacy of ZSTK474, a PI3K inhibitor, in a sarcoma cell line panel

P-1403 A zebrafish chemical suppressor screening identifies antifungal azoles as inhibitors of the Wnt/beta-catenin pathway.

Naoyuki Nishiyama, Yusuke Oka, Yoshimasa Uehara (Dept. Microbiol., Iwate Med. Univ., Sch. Pharm.)

P-1404 Suppressive effect of LAT1 inhibitor on thymic carcinoma cells

P-1405 TGF-beta Is a Critical Mediator Of Sorafenib Resistance In Hepatocellular Carcinoma

P-1406 The growth inhibitory effect of RAD001 in the chemotherapy-resistant breast cancer with low expression of DYRK2.

RADO01 は化学療法耐性 DYRK2 低発現乳癌において有効である

P-1407 Effect of the STAT3 inhibitor STX-0119 on in vitro and in vivo temozolomide-resistant glioblastoma cell line

Tadashi Ashizawa, Akira Iizuka, Masaru Komiyama, Akira Asai, Ken Yamaguchi, Yasuto Akiyama (Dept. Immunother. University. Shizuoka Cancer Ctr. Res. Inst., Center for Drug Discovery, University of Shizuoka)

P-1408 Involvement of c-Met activation for acquisition of resistance to PI3K inhibitors

PI3K 阻害剤獲得耐性細胞における c-Met 活性化とその耐性への関

P-1409 Cpg hypermethylation contributes to PTEN loss in gefitinib-resistant lung cancer cells.

P-1410 EGFR recycling to the cell membrane stimulates its downstream signaling leading to AKT activation in lung cancer cells

P-1411 EGFR recycling to the cell membrane stimulates its downstream signaling leading to AKT activation in lung cancer cells

P-1412 EGFR recycling to the cell membrane stimulates its downstream signaling leading to AKT activation in lung cancer cells

P-1413 EGFR recycling to the cell membrane stimulates its downstream signaling leading to AKT activation in lung cancer cells

17 Chemotherapy and endocrine therapy

Room P(D2-1) Sep. 25 (Thu.) 17:00-17:45

P17-1 Anticancer drug resistance (1)
抗がん剤の耐性機構（1）

座席：西條 基夫（新潟大学・歯学部・歯茎内科）

P17-2 Anticancer drug resistance (2)
抗がん剤の耐性機構（2）
Chairperson: Yoshihiro Torimoto (Oncology Ctr., Asahikawa Med. Hosp.)

座席：鳥本 妙宏（旭川医科大学病院・腫瘍センター）

P1418 Organic cation transporter, OCT6 mediates uptake and resistance to platinum drugs
オーガニックカチオントランスポーター、OCT6はプラチナ系薬剤の細胞内移行及び耐性に関与する

OCT6はプラチナ製剤の細胞内取り込み及び耐性形成に関与する頻繁に報告されてきている。我々はOCT6を過剰発現させたマウスの脾実質細胞を用い、プラチナ系薬剤に対する耐性形成過程を解析した。OCT6の過剰発現が細胞の耐性形成に重要な役割を果たしていることが示された。この結果は、OCT6がプラチナ系薬剤の治療成績を高める可能性を示唆するものである。
Identification of therapeutic target molecule for cancer relapse suppression after 5-FU-based adjuvant chemotherapy

5-FU系薬物による補助化学療法後の再発抑制に重点を置く分子治療標的の同定

西村哲, 石田賢, 久米治平, 佐藤慧, 島村守, 小武内尚, 武知 貞士, 若林剛 (岩手医科大学・外科, 大圏薬品工業株式会社・齋藤野薬学研究所)
Anti-angiotensin II receptor antagonists (ACEI) exhibit pro-apoptotic activity in colon cancer via inducing JNK-SIRT1-p53 signaling

Pitavastatin Induces Caspase-Dependent Apoptosis in Pancreatic Cancer Cells in Vitro and In a Xenograft Mice Model

Interferon-γ (IFN-γ) induces DR5/Caspase-8/tBid/Mitochondrial Dependent Apoptosis by Inducing the IIDO/Tryptophan Pathway

Impact of grafted tumor types and host mouse strains on metastasis repression by the C-ion and iDCs combination therapy

Study of the effectiveness of BNCT in the amino acid addition BSH using rat brain tumor model

Development of a cell-penetrating boron cluster for boron neutron capture therapy

The response of oral squamous cancer and melanoma cells to boron neutron capture reaction

Clinical study on Boron neutron capture therapy for malignant meningioma
P-1445 Non-equilibrium atmospheric pressure plasma (NEPP) generates oxidative injury

Non-published data suggest that NEPP induces oxidative stress in cells.

P-1446 Long-term fractionated radiation with stepwise dose-escalation potentiates cellular radiosensitivity
Masatoshi Suzuki1, Tomohiro Osaki1, Takeshi Tsuka1, Norihiko Itoh1, Tomohiro Imagawa1, Yutaka Tamura2, Yoshiharu Okamoto1 (1School Vet. Med., 2Dept. Radiation Med., Grad. Sch. Med., Hokkaido Univ.)

Analysis of molecular mechanism involved in invasiveness of radiation treated breast cancer cells

P-1451 Investigations on a new Hsp90 inhibitor as combined with low and high LET radiation
Ayay Masaoka1, Shigeki Sunada1, Hirokazu Hirakawa1, Mitsuhiro Nenoi1, Akira Fujimori1, Ryuichi Ozaki1 (Research Center for Radiation Protection, NHK, Dept. Nuclear Engr. and Mgt. Sch. of Engr., Tokai Univ.)

New Hsp90 ニューエナジー導入とエネルギー放療との併用効果の研究
野村 克一, 遠藤 真也, 池田 弘, 松本 春, 藤森 曉, 岡安 賢一 (放射研・リジック・減化・東大院, 工)

P-1452 Combined application of doxorubicin-loaded thermosensitive liposomes and photothermal therapy in lymph nodes

P-1453 Induction of mitotic cell death in p53 siRNA-treated human fibroblast cells by hyperthermia
Kenji Kawamura (Department of Urology, Keij University Medical Center)

P-1454 Rebamipide does not interfere with the radiotherapy and chemotherapy of CDDP or DOC in human oral tumor-bearing mice
Masaumi Shiba1, Naoya Uematsu, (Third Institute of New Drug Discovery, Otsuka Pharmaceutical Co., Ltd.)

P-1455 Association of vegetable and fruit intake with gastric cancer risk: A pooled analysis of four cohort studies
Kazuma Nagata1, Ryoo Yoshida2, Ayuki Hirose1, Takuya Tanaka1, Yoshihiro Nakagawa1, Akimitsu Hiraki, Masanori Shinohara1 (Dept. Oral and Maxillofacial Surg. Life Sciences, Kumamoto Univ.)

P-1456 Analysis of molecular mechanism involved in invasiveness of radiation treated breast cancer cells

乳癌における放射線照射後の浸潤能獲得過程に関わる分子機序の解析
南 喜明1, 小野寺 建, 佐藤 喜世1, 野村 春, 松本 春, 藤森 曉, 岡安 賢一 (放射研・リジック・減化・東大院, 工)
Cigarette smoking and breast cancer risk in relation to estrogen and progesterone receptor status: a case-control study
Yoshikazu Nishino1, Masaaki Kawai2, Yoichiro Kakugawa2, Yuko Minami1 (1 Div. Cancer Epidemiology and Prevention, Miyagi Cancer Ctr. Res. Inst., Dept. of Breast Oncology, Miyagi Cancer Ctr., 2 Div. Community Health, Tohoku Univ. Sch. of Med.)

Malignant mesothelioma: a case-control study
Katsuaki Harashima1, Naoko Tanaka1, Masahiko Yamasaki2, Hiroshi Yamada2, Shiro Kato3 (1 Dept. Prevent. Med., Miyagi Cancer Ctr., 2 Dept. Surgery, Miyagi Cancer Ctr., 3 Dept. Radiology, Miyagi Cancer Ctr.)

Association of high-sensitivity CRP and risk factors of breast cancer

Tobacco smoking and the risk of subsequent primary cancer

Association between shift work and the risk of death from cancer
Hidenori Ito1, Keita Matsuoka1, Kazuhiro Yamauchi1, Yuko Tanaka1, Masaaki Kawai2, Yoichiro Kakugawa2, Yuko Minami1 (1 Div. Cancer Epidemiology and Prevention, Miyagi Cancer Ctr. Res. Inst., Dept. of Breast Oncology, Miyagi Cancer Ctr., 2 Div. Community Health, Tohoku Univ. Sch. of Med.)

Cigarette smoking and breast cancer risk in relation to estrogen and progesterone receptor status: a case-control study
Yoshikazu Nishino1, Masaaki Kawai2, Yoichiro Kakugawa2, Yuko Minami1 (1 Div. Cancer Epidemiology and Prevention, Miyagi Cancer Ctr. Res. Inst., Dept. of Breast Oncology, Miyagi Cancer Ctr., 2 Div. Community Health, Tohoku Univ. Sch. of Med.)

Malignant mesothelioma: a case-control study
Katsuaki Harashima1, Naoko Tanaka1, Masahiko Yamasaki2, Hiroshi Yamada2, Shiro Kato3 (1 Dept. Prevent. Med., Miyagi Cancer Ctr., 2 Dept. Surgery, Miyagi Cancer Ctr., 3 Dept. Radiology, Miyagi Cancer Ctr.)

Association of high-sensitivity CRP and risk factors of breast cancer

Tobacco smoking and the risk of subsequent primary cancer
Junichiro Mokuno1, 2, Takamasa Matuda3, Yosikazu Nakamura1 (1 Dept. Epidemiol., Nagoya Univ., Grad. Sch. Med., 2 Dept. Healthcare Management, Univ. of Tsukuba, 3 Dept. Int. Med., Fukui Prefectural Hosp. Hospital, 4 Fukuiken Saiseikai Hospital, 5 Fukuiken Health Care Association, 6 Fukuiken Saiseikai Hospital, 7 Dept. Public Health, Jichi Medical University)

Association between shift work and the risk of death from cancer
Hidenori Ito1, Keita Matsuoka1, Kazuhiro Yamauchi1, Yuko Tanaka1, Masaaki Kawai2, Yoichiro Kakugawa2, Yuko Minami1 (1 Div. Cancer Epidemiology and Prevention, Miyagi Cancer Ctr. Res. Inst., Dept. of Breast Oncology, Miyagi Cancer Ctr., 2 Div. Community Health, Tohoku Univ. Sch. of Med.)

Cigarette smoking and breast cancer risk in relation to estrogen and progesterone receptor status: a case-control study
Yoshikazu Nishino1, Masaaki Kawai2, Yoichiro Kakugawa2, Yuko Minami1 (1 Div. Cancer Epidemiology and Prevention, Miyagi Cancer Ctr. Res. Inst., Dept. of Breast Oncology, Miyagi Cancer Ctr., 2 Div. Community Health, Tohoku Univ. Sch. of Med.)

Malignant mesothelioma: a case-control study
Katsuaki Harashima1, Naoko Tanaka1, Masahiko Yamasaki2, Hiroshi Yamada2, Shiro Kato3 (1 Dept. Prevent. Med., Miyagi Cancer Ctr., 2 Dept. Surgery, Miyagi Cancer Ctr., 3 Dept. Radiology, Miyagi Cancer Ctr.)

Association of high-sensitivity CRP and risk factors of breast cancer

Tobacco smoking and the risk of subsequent primary cancer
Junichiro Mokuno1, 2, Takamasa Matuda3, Yosikazu Nakamura1 (1 Dept. Epidemiol., Nagoya Univ., Grad. Sch. Med., 2 Dept. Healthcare Management, Univ. of Tsukuba, 3 Dept. Int. Med., Fukui Prefectural Hosp. Hospital, 4 Fukuiken Saiseikai Hospital, 5 Fukuiken Health Care Association, 6 Fukuiken Saiseikai Hospital, 7 Dept. Public Health, Jichi Medical University)

Association between shift work and the risk of death from cancer
Hidenori Ito1, Keita Matsuoka1, Kazuhiro Yamauchi1, Yuko Tanaka1, Masaaki Kawai2, Yoichiro Kakugawa2, Yuko Minami1 (1 Div. Cancer Epidemiology and Prevention, Miyagi Cancer Ctr. Res. Inst., Dept. of Breast Oncology, Miyagi Cancer Ctr., 2 Div. Community Health, Tohoku Univ. Sch. of Med.)

Cigarette smoking and breast cancer risk in relation to estrogen and progesterone receptor status: a case-control study
Yoshikazu Nishino1, Masaaki Kawai2, Yoichiro Kakugawa2, Yuko Minami1 (1 Div. Cancer Epidemiology and Prevention, Miyagi Cancer Ctr. Res. Inst., Dept. of Breast Oncology, Miyagi Cancer Ctr., 2 Div. Community Health, Tohoku Univ. Sch. of Med.)
P-1474 Meta-analysis of Gene Expression Profiles Reveals Dysregulation of Pathways in Nasopharyngeal Carcinoma

Tavan Janvilisri, Warut Tulalamba, Noppadol Larbcharoenb
(‘Department of Biochemistry, Faculty of Science, Mahidol University, 3Graduate Programme in Molecular Medicine, Faculty of Science Mahidol University, ‘Department of Pathology, Faculty of Medicine Ramathibodi Hospital Mahidol University)

P-1477 Promising impact of pretherapeutic laboratory values in oral squamous cell carcinoma

Hikaru Nakashima, Ryouji Yosida, Yuichiro Matuoka, Hideki Nakayama, Masasi Nagata, Akiyuki Hirose, Ken'ya Nakahara, Yoshibori Nakagawa, Hidetaka Ueda, Choji Uchiyama, Akimitsu Hiraki, Masanori Shinohara